These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32020587)
1. Sulfur Hexafluoride and Potassium Bromide as Groundwater Tracers for Managed Aquifer Recharge. Gerenday SP; Clark JF; Hansen J; Fischer I; Koreny J Ground Water; 2020 Sep; 58(5):777-787. PubMed ID: 32020587 [TBL] [Abstract][Full Text] [Related]
2. An Analytical Method for Assessing Recharge Using Groundwater Travel Time in Dupuit-Forchheimer Aquifers. Chesnaux R; Santoni S; Garel E; Huneau F Ground Water; 2018 Nov; 56(6):986-992. PubMed ID: 29732535 [TBL] [Abstract][Full Text] [Related]
3. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment. Clark JF; Hudson GB; Avisar D Environ Sci Technol; 2005 Jun; 39(11):3939-45. PubMed ID: 15984768 [TBL] [Abstract][Full Text] [Related]
4. Dating of young groundwater using four anthropogenic trace gases (SF6, SF5CF3, CFC-12 and Halon-1301): methodology and first results. Bartyzel J; Rozanski K Isotopes Environ Health Stud; 2016; 52(4-5):393-404. PubMed ID: 26863003 [TBL] [Abstract][Full Text] [Related]
5. Groundwater recharge and water table response to changing conditions for aquifers at different physiography: The case of a semi-humid river catchment, northwestern highlands of Ethiopia. Yenehun A; Nigate F; Belay AS; Desta MT; Van Camp M; Walraevens K Sci Total Environ; 2020 Dec; 748():142243. PubMed ID: 33113708 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a managed aquifer recharge system using multiple tracers. Moeck C; Radny D; Popp A; Brennwald M; Stoll S; Auckenthaler A; Berg M; Schirmer M Sci Total Environ; 2017 Dec; 609():701-714. PubMed ID: 28763667 [TBL] [Abstract][Full Text] [Related]
7. Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil). Chatton E; Aquilina L; Pételet-Giraud E; Cary L; Bertrand G; Labasque T; Hirata R; Martins V; Montenegro S; Vergnaud V; Aurouet A; Kloppmann W; Pauwels Sci Total Environ; 2016 Nov; 569-570():1114-1125. PubMed ID: 27387803 [TBL] [Abstract][Full Text] [Related]
8. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport. Medici G; West LJ; Banwart SA J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856 [TBL] [Abstract][Full Text] [Related]
9. Hydrological components of groundwater recharge in leaky aquifers adjacent to semipervious streambank: analytical study. Mahdavi A Environ Sci Pollut Res Int; 2022 Apr; 29(17):24833-24848. PubMed ID: 34826081 [TBL] [Abstract][Full Text] [Related]
10. Estimating the impact of vadose zone heterogeneity on agricultural managed aquifer recharge: A combined experimental and modeling study. Zhou T; Levintal E; Brunetti G; Jordan S; Harter T; Kisekka I; Šimůnek J; Dahlke HE Water Res; 2023 Dec; 247():120781. PubMed ID: 37918200 [TBL] [Abstract][Full Text] [Related]
11. Movement of water infiltrated from a recharge basin to wells. O'Leary DR; Izbicki JA; Moran JE; Meeth T; Nakagawa B; Metzger L; Bonds C; Singleton MJ Ground Water; 2012; 50(2):242-55. PubMed ID: 21740423 [TBL] [Abstract][Full Text] [Related]
12. Limitations of the use of environmental tracers to infer groundwater age. McCallum JL; Cook PG; Simmons CT Ground Water; 2015 Apr; 53 Suppl 1():56-70. PubMed ID: 25040356 [TBL] [Abstract][Full Text] [Related]
13. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations. Stadler S; Osenbruck K; Duijnisveld WH; Schwiede M; Bottcher J Isotopes Environ Health Stud; 2010 Sep; 46(3):312-24. PubMed ID: 20812119 [TBL] [Abstract][Full Text] [Related]
14. Recharge and residence times of groundwater in hyper arid areas: The confined aquifer of Calama, Loa River Basin, Atacama Desert, Chile. Herrera C; Godfrey L; Urrutia J; Custodio E; Jordan T; Jódar J; Delgado K; Barrenechea F Sci Total Environ; 2021 Jan; 752():141847. PubMed ID: 33207522 [TBL] [Abstract][Full Text] [Related]
15. Modelling of recharge and pollutant fluxes to urban groundwaters. Thomas A; Tellam J Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236 [TBL] [Abstract][Full Text] [Related]
16. Influence of monsoonal recharge on arsenic and dissolved organic matter in the Holocene and Pleistocene aquifers of the Bengal Basin. Kulkarni HV; Mladenov N; Datta S; Chatterjee D Sci Total Environ; 2018 Oct; 637-638():588-599. PubMed ID: 29754092 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of saline tracer performance during electrical conductivity groundwater monitoring. Mastrocicco M; Prommer H; Pasti L; Palpacelli S; Colombani N J Contam Hydrol; 2011 Apr; 123(3-4):157-66. PubMed ID: 21324545 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of natural SF6 in the sedimentary aquifers of the North China Plain as a restriction on groundwater dating. von Rohden C; Kreuzer A; Chen Z; Aeschbach-Hertig W Isotopes Environ Health Stud; 2010 Sep; 46(3):279-90. PubMed ID: 20603738 [TBL] [Abstract][Full Text] [Related]
19. Hydrogeological conditions of a crystalline aquifer: simulation of optimal abstraction rates under scenarios of reduced recharge. Yidana SM; Fynn OF; Chegbeleh LP; Nude PM; Asiedu DK ScientificWorldJournal; 2013; 2013():606375. PubMed ID: 24453882 [TBL] [Abstract][Full Text] [Related]
20. Piezometric level and electrical conductivity spatiotemporal monitoring as an instrument to design further managed aquifer recharge strategies in a complex estuarial system under anthropogenic pressure. Coelho VHR; Bertrand GF; Montenegro SMGL; Paiva ALR; Almeida CN; Galvão CO; Barbosa LR; Batista LFDR; Ferreira ELGA J Environ Manage; 2018 Mar; 209():426-439. PubMed ID: 29309966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]