BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 32020673)

  • 1. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS.
    Li N; Zhan X
    Mass Spectrom Rev; 2020 Sep; 39(5-6):471-498. PubMed ID: 32020673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas.
    Li J; Zhan X
    Biochim Biophys Acta Proteins Proteom; 2021 Mar; 1869(3):140584. PubMed ID: 33321259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics for cancer biomarker discovery.
    Liang S; Xu Z; Xu X; Zhao X; Huang C; Wei Y
    Comb Chem High Throughput Screen; 2012 Mar; 15(3):221-31. PubMed ID: 22221055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Mitochondria from Ovarian Cancer Tissues and Control Ovarian Tissues for Quantitative Proteomics Analysis.
    Zhan X; Li H; Qian S; Zhan X; Li N
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31789316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SILAC quantitative proteomics analysis of ivermectin-related proteomic profiling and molecular network alterations in human ovarian cancer cells.
    Li N; Li J; Desiderio DM; Zhan X
    J Mass Spectrom; 2021 Jan; 56(1):e4659. PubMed ID: 33047383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isobaric labeling-based relative quantification in shotgun proteomics.
    Rauniyar N; Yates JR
    J Proteome Res; 2014 Dec; 13(12):5293-309. PubMed ID: 25337643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide Labeling Using Isobaric Tagging Reagents for Quantitative Phosphoproteomics.
    Cheng L; Pisitkun T; Knepper MA; Hoffert JD
    Methods Mol Biol; 2016; 1355():53-70. PubMed ID: 26584918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of elemental mass spectrometry in phosphoproteomic applications.
    Maes E; Tirez K; Baggerman G; Valkenborg D; Schoofs L; Encinar JR; Mertens I
    Mass Spectrom Rev; 2016; 35(3):350-60. PubMed ID: 25139451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking common quantification strategies for large-scale phosphoproteomics.
    Hogrebe A; von Stechow L; Bekker-Jensen DB; Weinert BT; Kelstrup CD; Olsen JV
    Nat Commun; 2018 Mar; 9(1):1045. PubMed ID: 29535314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Workflow of Mass Spectrometry-based Shotgun Proteomics of Tissue Samples.
    Verma A; Kumar V; Ghantasala S; Mukherjee S; Srivastava S
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomics by stable isotope labeling and mass spectrometry.
    Pan S; Aebersold R
    Methods Mol Biol; 2007; 367():209-18. PubMed ID: 17185778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute quantitation of protein posttranslational modification isoform.
    Yang Z; Li N
    Methods Mol Biol; 2015; 1306():105-19. PubMed ID: 25930697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative measurement of phosphopeptides and proteins via stable isotope labeling in Arabidopsis and functional phosphoproteomic strategies.
    Li N
    Methods Mol Biol; 2012; 876():17-32. PubMed ID: 22576083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-Free Quantitative Phosphoproteomics for Algae.
    Ford MM; Lawrence SR; Werth EG; McConnell EW; Hicks LM
    Methods Mol Biol; 2020; 2139():197-211. PubMed ID: 32462588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardization approaches in absolute quantitative proteomics with mass spectrometry.
    Calderón-Celis F; Encinar JR; Sanz-Medel A
    Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid-coded tagging approaches in quantitative proteomics.
    Chen X; Sun L; Yu Y; Xue Y; Yang P
    Expert Rev Proteomics; 2007 Feb; 4(1):25-37. PubMed ID: 17288513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.