BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 320207)

  • 1. Energy coupling to net K+ transport in Escherichia coli K-12.
    Rhoads DB; Epstein W
    J Biol Chem; 1977 Feb; 252(4):1394-401. PubMed ID: 320207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation transport in Escherichia coli. IX. Regulation of K transport.
    Rhoads DB; Epstein W
    J Gen Physiol; 1978 Sep; 72(3):283-95. PubMed ID: 359759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli.
    Laimins LA; Rhoads DB; Altendorf K; Epstein W
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3216-9. PubMed ID: 356049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli.
    Bradbeer C
    J Bacteriol; 1993 May; 175(10):3146-50. PubMed ID: 8387997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A K+ transport ATPase in Escherichia coli.
    Epstein W; Whitelaw V; Hesse J
    J Biol Chem; 1978 Oct; 253(19):6666-8. PubMed ID: 211128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.
    Berger EA
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1514-8. PubMed ID: 4268097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy supply for active transport in anaerobically grown Escherichia coli.
    Boonstra J; Downie JA; Konings WN
    J Bacteriol; 1978 Dec; 136(3):844-53. PubMed ID: 363696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP.
    Stewart LM; Bakker EP; Booth IR
    J Gen Microbiol; 1985 Jan; 131(1):77-85. PubMed ID: 3886836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R; Altendorf K
    Biochim Biophys Acta; 1993 Jun; 1143(1):62-6. PubMed ID: 8499455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation transport in Escherichia coli. VIII. Potassium transport mutants.
    Rhoads DB; Waters FB; Epstein W
    J Gen Physiol; 1976 Mar; 67(3):325-41. PubMed ID: 4578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant of Escherichia coli defective in response to colicin K and in active transport.
    Plate CA
    J Bacteriol; 1976 Feb; 125(2):467-74. PubMed ID: 128554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thallous ion is accumulated by potassium transport systems in Escherichia coli.
    Damper PD; Epstein W; Rosen BP; Sorensen EN
    Biochemistry; 1979 Sep; 18(19):4165-9. PubMed ID: 385048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic consequences of multiple K+ uptake systems in Escherichia coli.
    Mulder MM; Teixeira de Mattos MJ; Postma PW; van Dam K
    Biochim Biophys Acta; 1986 Sep; 851(2):223-8. PubMed ID: 3527265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus.
    Van Leeuwen CC; Postma E; Van den Broek PJ; Van Steveninck J
    J Biol Chem; 1991 Jul; 266(19):12146-51. PubMed ID: 1648083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase.
    Simoni RD; Shandell A
    J Biol Chem; 1975 Dec; 250(24):9421-7. PubMed ID: 127796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration.
    Trchounian A; Ohanjanyan Y; Bagramyan K; Vardanian V; Zakharyan E; Vassilian A; Davtian M
    Biosci Rep; 1998 Jun; 18(3):143-54. PubMed ID: 9798786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1976 Feb; 251(4):962-7. PubMed ID: 2608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis.
    Dean DA; Davidson AL; Nikaido H
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9134-8. PubMed ID: 2531894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy coupling in bacterial periplasmic transport systems. Studies in intact Escherichia coli cells.
    Joshi AK; Ahmed S; Ferro-Luzzi Ames G
    J Biol Chem; 1989 Feb; 264(4):2126-33. PubMed ID: 2644255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy coupling to the transport of inorganic phosphate in Escherichia coli K12.
    Rosenberg H; Gerdes RG; Harold FM
    Biochem J; 1979 Jan; 178(1):133-7. PubMed ID: 373750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.