These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum) by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids. Singh AK; Paritosh K; Kant U; Burma PK; Pental D PLoS One; 2016; 11(7):e0158603. PubMed ID: 27391960 [TBL] [Abstract][Full Text] [Related]
24. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Ibargutxi MA; Estela A; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jan; 72(1):437-42. PubMed ID: 16391075 [TBL] [Abstract][Full Text] [Related]
25. Like Parents, Like Offspring? Susceptibility to Bt Toxins, Development on Dual-Gene Bt Cotton, and Parental Effect of Cry1Ac on a Nontarget Lepidopteran Pest. Rabelo MM; Matos JML; Orozco-Restrepo SM; Paula-Moraes SV; Pereira EJG J Econ Entomol; 2020 Jun; 113(3):1234-1242. PubMed ID: 32221528 [TBL] [Abstract][Full Text] [Related]
26. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda. Yang F; Kerns DL; Head GP; Price P; Huang F Pest Manag Sci; 2017 Dec; 73(12):2495-2503. PubMed ID: 28627124 [TBL] [Abstract][Full Text] [Related]
27. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests. Chen WB; Lu GQ; Cheng HM; Liu CX; Xiao YT; Xu C; Shen ZC; Wu KM J Invertebr Pathol; 2017 Oct; 149():59-65. PubMed ID: 28782511 [TBL] [Abstract][Full Text] [Related]
28. Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. Adamczyk JJ; Adams LC; Hardee DD J Econ Entomol; 2001 Dec; 94(6):1589-93. PubMed ID: 11777069 [TBL] [Abstract][Full Text] [Related]
29. High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). Chen Y; Rivlin A; Lange A; Ye X; Vaghchhipawala Z; Eisinger E; Dersch E; Paris M; Martinell B; Wan Y Plant Cell Rep; 2014 Jan; 33(1):153-64. PubMed ID: 24129847 [TBL] [Abstract][Full Text] [Related]
30. Laboratory evaluation of transgenic Populus davidiana×Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against gypsy moth and fall webworm. Ding L; Chen Y; Wei X; Ni M; Zhang J; Wang H; Zhu Z; Wei J PLoS One; 2017; 12(6):e0178754. PubMed ID: 28582405 [TBL] [Abstract][Full Text] [Related]
31. [Inheritance and segregation of transformants in cotton with two types of insect-resistant genes]. Wu JH; Zhang XL; Luo XL; Tian YC Yi Chuan Xue Bao; 2003 Jul; 30(7):631-6. PubMed ID: 14579531 [TBL] [Abstract][Full Text] [Related]
32. Field-evolved resistance of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), to transgenic Bacillus thuringiensis (Bt) cotton expressing crystal 1Ac (Cry1Ac) and Cry2Ab in India. Naik VC; Kumbhare S; Kranthi S; Satija U; Kranthi KR Pest Manag Sci; 2018 Nov; 74(11):2544-2554. PubMed ID: 29697187 [TBL] [Abstract][Full Text] [Related]
33. Development of insect-resistant transgenic cotton with chimeric TVip3A accumulating in chloroplasts. Wu J; Tian Y Methods Mol Biol; 2013; 958():247-58. PubMed ID: 23143498 [TBL] [Abstract][Full Text] [Related]
34. Effects of seasonal changes in cotton plants on the evolution of resistance to pyramided cotton producing the Bt toxins Cry1Ac and Cry1F in Helicoverpa zea. Carrière Y; Degain BA; Unnithan GC; Harpold VS; Heuberger S; Li X; Tabashnik BE Pest Manag Sci; 2018 Mar; 74(3):627-637. PubMed ID: 28967711 [TBL] [Abstract][Full Text] [Related]
35. Engineered resistance and risk assessment associated with insecticidal and weeds resistant transgenic cotton using wister rat model. Iqbal A; Ali MA; Ahmed S; Hassan S; Shahid N; Azam S; Rao AQ; Ali Q; Shahid AA Sci Rep; 2022 Feb; 12(1):2518. PubMed ID: 35169256 [TBL] [Abstract][Full Text] [Related]
36. Development of broad-spectrum insect-resistant tobacco by expression of synthetic cry1Ac and cry2Ab genes. Sohail MN; Karimi SM; Asad S; Mansoor S; Zafar Y; Mukhtar Z Biotechnol Lett; 2012 Aug; 34(8):1553-60. PubMed ID: 22488439 [TBL] [Abstract][Full Text] [Related]
37. Molecular characterization of a new synthetic cry2ab gene in Nicotiana tabacum. Karimi SM; Sohail MN; Amin I; Mansoor S; Mukhtar Z Biotechnol Lett; 2013 Jun; 35(6):969-74. PubMed ID: 23397269 [TBL] [Abstract][Full Text] [Related]
38. Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton. Vanti GL; Katageri IS; Inamdar SR; Hiremathada V; Swamy BM J Biotechnol; 2018 Jul; 278():20-27. PubMed ID: 29715487 [TBL] [Abstract][Full Text] [Related]
39. Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry2Ab. Luo S; Wu K; Tian Y; Liang G; Feng X; Zhang J; Guo Y J Econ Entomol; 2007 Jun; 100(3):909-15. PubMed ID: 17598555 [TBL] [Abstract][Full Text] [Related]
40. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. Downes S; Mahon R; Olsen K J Invertebr Pathol; 2007 Jul; 95(3):208-13. PubMed ID: 17470372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]