These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3202182)

  • 1. Renal adaptation to metabolic acidosis in senescent rats.
    Prasad R; Kinsella JL; Sacktor B
    Am J Physiol; 1988 Dec; 255(6 Pt 2):F1183-90. PubMed ID: 3202182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucocorticoids and metabolic acidosis-induced renal transports of inorganic phosphate, calcium, and NH4.
    Boross M; Kinsella J; Cheng L; Sacktor B
    Am J Physiol; 1986 May; 250(5 Pt 2):F827-33. PubMed ID: 3706535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in renal function, membrane protein metabolism, and Na,K-ATPase activity and abundance in hypokalemic F344 x BNF(1) rats.
    Eiam-Ong S; Sabatini S
    Gerontology; 1999; 45(5):254-64. PubMed ID: 10460986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-associated changes in ammoniagenesis in isolated rat renal tubule segments.
    Yamada H; Sacktor B; Kinsella J
    Am J Physiol; 1992 Apr; 262(4 Pt 2):F600-5. PubMed ID: 1566873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic acidosis and parathyroidectomy increase Na+-H+ exchange in brush border vesicles.
    Cohn DE; Klahr S; Hammerman MR
    Am J Physiol; 1983 Aug; 245(2):F217-22. PubMed ID: 6309012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of age on renal conservation of phosphate in the rat.
    Kiebzak GM; Sacktor B
    Am J Physiol; 1986 Sep; 251(3 Pt 2):F399-407. PubMed ID: 3752253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of Na+-K+ pump in rat proximal tubule is modulated by Na+-H+ exchanger.
    Fukuda Y; Aperia A
    Am J Physiol; 1988 Sep; 255(3 Pt 2):F552-7. PubMed ID: 2843053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidemia alone does not stimulate rat renal Na+-H+ antiporter activity.
    Northrup TE; Garella S; Perticucci E; Cohen JJ
    Am J Physiol; 1988 Aug; 255(2 Pt 2):F237-43. PubMed ID: 2841869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of Na+-H+ exchange in renal microvillus membrane vesicles. Role of dietary protein and uninephrectomy.
    Harris RC; Seifter JL; Brenner BM
    J Clin Invest; 1984 Dec; 74(6):1979-87. PubMed ID: 6511911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen ion secretion by the rat distal nephron: adaptation to chronic alkali and acid ingestion.
    Kornandakieti C; Grekin R; Tannen RL
    Am J Physiol; 1983 Sep; 245(3):F349-58. PubMed ID: 6614174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal brush-border Na+-H+ exchange activity in the aging rat.
    Kinsella JL; Sacktor B
    Am J Physiol; 1987 Apr; 252(4 Pt 2):R681-6. PubMed ID: 3032004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-H+ exchange and Na+-dependent transport systems in streptozotocin diabetic rat kidneys.
    el-Seifi S; Freiberg JM; Kinsella J; Cheng L; Sacktor B
    Am J Physiol; 1987 Jan; 252(1 Pt 2):R40-7. PubMed ID: 3028167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glomerular filtration, renal blood flow, and solute excretion in conscious aging rats.
    Corman B; Michel JB
    Am J Physiol; 1987 Oct; 253(4 Pt 2):R555-60. PubMed ID: 3661749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins.
    Mohebbi N; Mihailova M; Wagner CA
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F499-509. PubMed ID: 19439519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.
    Lawrence MJ; Wright PA; Wood CM
    J Exp Biol; 2015 Jul; 218(Pt 13):2124-35. PubMed ID: 25987732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of expression of the SN1 transporter during renal adaptation to chronic metabolic acidosis in rats.
    Karinch AM; Lin CM; Wolfgang CL; Pan M; Souba WW
    Am J Physiol Renal Physiol; 2002 Nov; 283(5):F1011-9. PubMed ID: 12372777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanisms of renal adaptation to disorders of water-electrolyte balance in metabolic acidosis].
    Krishtal' NV; Gozhenko AI; Gareeva EG
    Patol Fiziol Eksp Ter; 1994; (3):42-4. PubMed ID: 7824347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute metabolic acidosis enhances circulating parathyroid hormone, which contributes to the renal response against acidosis in the rat.
    Bichara M; Mercier O; Borensztein P; Paillard M
    J Clin Invest; 1990 Aug; 86(2):430-43. PubMed ID: 2166755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of acute acidemia on phosphate uptake by renal proximal tubular brush-border membranes.
    Levine BS; Kraut JA; Mishler DR; Crooks PW
    Am J Physiol; 1986 Nov; 251(5 Pt 2):F889-96. PubMed ID: 3777185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life-long food restriction prevents renal membrane lipid deposition and lowers renal work in rats.
    Eiam-Ong S; Eiam-Ong S; Sabatini S
    J Med Assoc Thai; 2001 Jun; 84 Suppl 1():S295-305. PubMed ID: 11529348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.