These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32022066)

  • 1. Homoleptic trimethylsilylchalcogenolato zincates [Zn(ESiMe
    Guschlbauer J; Vollgraff T; Sundermeyer J
    Dalton Trans; 2020 Feb; 49(8):2517-2526. PubMed ID: 32022066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoleptic Group 13 Trimethylsilylchalcogenolato Metalates [M(ESiMe
    Guschlbauer J; Vollgraff T; Sundermeyer J
    Inorg Chem; 2019 Nov; 58(22):15385-15392. PubMed ID: 31687815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy Chalcogenide-Based Ionic Liquids in Syntheses of Metal Chalcogenide Materials near Room Temperature.
    Guschlbauer J; Sundermeyer J
    ChemistryOpen; 2021 Feb; 10(2):92-96. PubMed ID: 33565731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Series of Homoleptic Linear Trimethylsilylchalcogenido Cuprates, Argentates and Aurates Cat[Me
    Guschlbauer J; Vollgraff T; Xie X; Weigend F; Sundermeyer J
    Inorg Chem; 2020 Dec; 59(23):17565-17572. PubMed ID: 33197182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy silylchalcogenido lanthanates synthesis Ph
    Guschlbauer J; Vollgraff T; Xie X; Fetoh A; Sundermeyer J
    Dalton Trans; 2021 Sep; 50(37):13103-13111. PubMed ID: 34581360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S.
    Zou Y; Su X; Jiang J
    J Am Chem Soc; 2013 Dec; 135(49):18377-84. PubMed ID: 24283701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc Tin Chalcogenide Complexes and Their Evaluation as Molecular Precursors for Cu
    Fuhrmann D; Dietrich S; Krautscheid H
    Inorg Chem; 2017 Nov; 56(21):13123-13131. PubMed ID: 29052986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Optimization of Cu-Zn-Sn-O to Prepare Cu
    Li Q; Hu J; Cui Y; Wang J; Du J; Wang M; Hao Y; Shen T; Duan L; Wang S; Sun K
    Front Chem; 2021; 9():675642. PubMed ID: 34124003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable -ESiMe3 Complexes of Cu(I) and Ag(I) (E=S, Se) with NHCs: Synthons in Ternary Nanocluster Assembly.
    Azizpoor Fard M; Levchenko TI; Cadogan C; Humenny WJ; Corrigan JF
    Chemistry; 2016 Mar; 22(13):4543-50. PubMed ID: 26865473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Counteranion on the Formation Pathway of Cu
    Ahmad R; Saddiqi NU; Wu M; Prato M; Spiecker E; Peukert W; Distaso M
    Inorg Chem; 2020 Feb; 59(3):1973-1984. PubMed ID: 31971380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soluble precursors for CuInSe2, CuIn(1-x)Ga(x)Se2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands.
    Jiang C; Lee JS; Talapin DV
    J Am Chem Soc; 2012 Mar; 134(11):5010-3. PubMed ID: 22329720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-Based Synthesis and Characterization of Cu
    Syafiq U; Ataollahi N; Maggio RD; Scardi P
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31547625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise construction of manganese-chromium carbonyl chalcogenide complexes: synthesis, electrochemical properties, and computational studies.
    Shieh M; Miu CY; Huang KC; Lee CF; Chen BG
    Inorg Chem; 2011 Aug; 50(16):7735-48. PubMed ID: 21774481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous-based Binary Sulfide Nanoparticle Inks for Cu
    Wang H; Yasin A; Quitoriano NJ; Demopoulos GP
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31561636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and tin(IV) selenide salts.
    Mitzi DB
    Inorg Chem; 2005 May; 44(10):3755-61. PubMed ID: 15877460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films.
    Just J; Sutter-Fella CM; Lützenkirchen-Hecht D; Frahm R; Schorr S; Unold T
    Phys Chem Chem Phys; 2016 Jun; 18(23):15988-94. PubMed ID: 27240735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions.
    Park J; Song M; Jung WM; Lee WY; Kim H; Kim Y; Hwang C; Shim IW
    Dalton Trans; 2013 Aug; 42(29):10545-50. PubMed ID: 23759949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homoleptic cobalt and copper phenolate A2[M(OAr)4] compounds: the effect of phenoxide fluorination.
    Buzzeo MC; Iqbal AH; Long CM; Millar D; Patel S; Pellow MA; Saddoughi SA; Smenton AL; Turner JF; Wadhawan JD; Compton RG; Golen JA; Rheingold AL; Doerrer LH
    Inorg Chem; 2004 Nov; 43(24):7709-25. PubMed ID: 15554636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trimethylsilylchalcogenolates of Co(II) and Mn(II): from mononuclear coordination complexes to clusters containing -ESiMe3 moieties (E = S, Se).
    Khadka CB; Macdonald DG; Lan Y; Powell AK; Fenske D; Corrigan JF
    Inorg Chem; 2010 Aug; 49(16):7289-97. PubMed ID: 20690738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu₂ZnSnS₄ nanoparticles.
    Tan JM; Lee YH; Pedireddy S; Baikie T; Ling XY; Wong LH
    J Am Chem Soc; 2014 May; 136(18):6684-92. PubMed ID: 24702183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.