These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32022278)

  • 1. Word stress representations are language-specific: Evidence from event-related brain potentials.
    Honbolygó F; Kóbor A; German B; Csépe V
    Psychophysiology; 2020 May; 57(5):e13541. PubMed ID: 32022278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saliency or template? ERP evidence for long-term representation of word stress.
    Honbolygó F; Csépe V
    Int J Psychophysiol; 2013 Feb; 87(2):165-72. PubMed ID: 23275150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERP evidence for implicit L2 word stress knowledge in listeners of a fixed-stress language.
    Kóbor A; Honbolygó F; Becker ABC; Schild U; Csépe V; Friedrich CK
    Int J Psychophysiol; 2018 Jun; 128():100-110. PubMed ID: 29654788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonetic Encoding Contributes to the Processing of Linguistic Prosody at the Word Level: Cross-Linguistic Evidence From Event-Related Potentials.
    Yu L; Zeng J; Wang S; Zhang Y
    J Speech Lang Hear Res; 2021 Dec; 64(12):4791-4801. PubMed ID: 34731592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of word stress related acoustic information: A multi-feature MMN study.
    Honbolygó F; Kolozsvári O; Csépe V
    Int J Psychophysiol; 2017 Aug; 118():9-17. PubMed ID: 28549538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lexical status on prosodic processing in infants learning a fixed stress language.
    Ragó A; Varga Z; Garami L; Honbolygó F; Csépe V
    Psychophysiology; 2021 Dec; 58(12):e13932. PubMed ID: 34432306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making predictable unpredictable with style - Behavioral and electrophysiological evidence for the critical role of prosodic expectations in the perception of prominence in speech.
    Kakouros S; Salminen N; Räsänen O
    Neuropsychologia; 2018 Jan; 109():181-199. PubMed ID: 29247667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lexical influence on stress processing in a fixed-stress language.
    Garami L; Ragó A; Honbolygó F; Csépe V
    Int J Psychophysiol; 2017 Jul; 117():10-16. PubMed ID: 28377265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deficit of long-term memory traces for words in children with cochlear implants.
    Zhang LL; Zhong YQ; Sun JW; Chen L; Sun JQ; Hou XY; Chen JW; Guo XT
    Clin Neurophysiol; 2020 Jun; 131(6):1323-1331. PubMed ID: 32304846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of maturation on suprasegmental speech processing in full- and preterm infants: a mismatch negativity study.
    Ragó A; Honbolygó F; Róna Z; Beke A; Csépe V
    Res Dev Disabil; 2014 Jan; 35(1):192-202. PubMed ID: 24171828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrotemporal processing drives fast access to memory traces for spoken words.
    Tavano A; Grimm S; Costa-Faidella J; Slabu L; Schröger E; Escera C
    Neuroimage; 2012 May; 60(4):2300-8. PubMed ID: 22387169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phoneme-free prosodic representations are involved in pre-lexical and lexical neurobiological mechanisms underlying spoken word processing.
    Schild U; Becker AB; Friedrich CK
    Brain Lang; 2014 Sep; 136():31-43. PubMed ID: 25128904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of lexical stress: mismatch negativity reflects fundamental frequency and intensity.
    Zora H; Schwarz IC; Heldner M
    Neuroreport; 2015 Sep; 26(13):791-6. PubMed ID: 26164606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. It's early: event-related potential evidence for initial interaction of syntax and prosody in speech comprehension.
    Eckstein K; Friederici AD
    J Cogn Neurosci; 2006 Oct; 18(10):1696-711. PubMed ID: 17014374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-free auditory EEG paradigm for probing multiple levels of speech processing in the brain.
    Gansonre C; Højlund A; Leminen A; Bailey C; Shtyrov Y
    Psychophysiology; 2018 Nov; 55(11):e13216. PubMed ID: 30101984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the neurocognitive background of speech perception with a fast multi-feature MMN paradigm.
    Honbolygó F; Zulauf B; Zavogianni MI; Csépe V
    Biol Futur; 2024 Mar; 75(1):145-158. PubMed ID: 38805154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common neural basis for phoneme processing in infants and adults.
    Dehaene-Lambertz G; Gliga T
    J Cogn Neurosci; 2004 Oct; 16(8):1375-87. PubMed ID: 15509385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of different acoustic cues in L1 lexical tone on the perception of L2 lexical stress using principal component analysis: an ERP study.
    Meng Y; Zhang J; Liu S; Wu C
    Exp Brain Res; 2020 Jun; 238(6):1489-1498. PubMed ID: 32435921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course of Chinese monosyllabic spoken word recognition: evidence from ERP analyses.
    Zhao J; Guo J; Zhou F; Shu H
    Neuropsychologia; 2011 Jun; 49(7):1761-70. PubMed ID: 21382389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in sensory processing of German vowels and physically matched non-speech sounds as revealed by the mismatch negativity (MMN) of the human event-related brain potential (ERP).
    Christmann CA; Berti S; Steinbrink C; Lachmann T
    Brain Lang; 2014 Sep; 136():8-18. PubMed ID: 25108306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.