These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32022362)

  • 1. Quantitative theory for the transverse relaxation time of blood water.
    Li W; van Zijl PCM
    NMR Biomed; 2020 May; 33(5):e4207. PubMed ID: 32022362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.
    Grgac K; Li W; Huang A; Qin Q; van Zijl PC
    Magn Reson Imaging; 2017 May; 38():234-249. PubMed ID: 27993533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field.
    Thulborn KR; Waterton JC; Matthews PM; Radda GK
    Biochim Biophys Acta; 1982 Feb; 714(2):265-70. PubMed ID: 6275909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR relaxation rates and blood oxygenation level.
    Meyer ME; Yu O; Eclancher B; Grucker D; Chambron J
    Magn Reson Med; 1995 Aug; 34(2):234-41. PubMed ID: 7476083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water.
    Thulborn KR
    Neuroimage; 2012 Aug; 62(2):589-93. PubMed ID: 22001265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative theory for the longitudinal relaxation time of blood water.
    Li W; Grgac K; Huang A; Yadav N; Qin Q; van Zijl PC
    Magn Reson Med; 2016 Jul; 76(1):270-81. PubMed ID: 26285144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic relaxation in blood and blood clots.
    Bryant RG; Marill K; Blackmore C; Francis C
    Magn Reson Med; 1990 Jan; 13(1):133-44. PubMed ID: 2319929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of blood R2 relaxivity on CPMG echo-spacing at 2.35 and 7 T.
    Gardener AG; Francis ST; Prior M; Peters A; Gowland PA
    Magn Reson Med; 2010 Oct; 64(4):967-74. PubMed ID: 20715058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and molecular exchange effects on T2 relaxation of living tissues: a pulse spacing dependence study.
    Grucker D; Mauss Y; Steibel J; Poulet P; Chambron J
    Biochim Biophys Acta; 1986 Aug; 887(3):249-55. PubMed ID: 3730429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of susceptibility-induced transverse relaxation in the capillary network in the diffusion narrowing regime.
    Frøhlich AF; Østergaard L; Kiselev VG
    Magn Reson Med; 2005 Mar; 53(3):564-73. PubMed ID: 15723392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water dynamics in human blood via combined measurements of T2 relaxation and diffusion in the presence of gadolinium.
    Stanisz GJ; Li JG; Wright GA; Henkelman RM
    Magn Reson Med; 1998 Feb; 39(2):223-33. PubMed ID: 9469705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The magnetic properties and water dynamics of the red blood cell: a study by proton-NMR lineshape analysis.
    Gasparovic C; Matwiyoff NA
    Magn Reson Med; 1992 Aug; 26(2):274-99. PubMed ID: 1325024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse signal decay under the weak field approximation: Theory and validation.
    Berman AJL; Pike GB
    Magn Reson Med; 2018 Jul; 80(1):341-350. PubMed ID: 29194739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transverse relaxation rate enhancement caused by magnetic particulates.
    Hardy PA; Henkelman RM
    Magn Reson Imaging; 1989; 7(3):265-75. PubMed ID: 2548049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite.
    Gillis P; Koenig SH
    Magn Reson Med; 1987 Oct; 5(4):323-45. PubMed ID: 2824967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The line shapes of the water proton resonances of red blood cells containing carbonyl hemoglobin, deoxyhemoglobin, and methemoglobin: implications for the interpretation of proton MRI at fields of 1.5 T and below.
    Matwiyoff NA; Gasparovic C; Mazurchuk R; Matwiyoff G
    Magn Reson Imaging; 1990; 8(3):295-301. PubMed ID: 2366641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of diffusion in ferritin-induced relaxation enhancement of protons.
    Boss MA; Chris Hammel P
    J Magn Reson; 2012 Apr; 217():36-40. PubMed ID: 22410189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues.
    Hills BP; Duce SL
    Magn Reson Imaging; 1990; 8(3):321-31. PubMed ID: 2164129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematocrit and oxygenation dependence of blood (1)H(2)O T(1) at 7 Tesla.
    Grgac K; van Zijl PC; Qin Q
    Magn Reson Med; 2013 Oct; 70(4):1153-9. PubMed ID: 23169066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse nuclear magnetic resonance measurements of water exchange across the erythrocyte membrane employing a low Mn concentration.
    Pirkle JL; Ashley DL; Goldstein JH
    Biophys J; 1979 Mar; 25(3):389-406. PubMed ID: 262396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.