BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 32022797)

  • 1. Development of manufacturing method of the MAP21 magnesium alloy prepared by selective laser melting (SLM).
    Gruber K; Mackiewicz A; Stopyra W; Dziedzic R; Kurzynowski T
    Acta Bioeng Biomech; 2019; 21(4):157-168. PubMed ID: 32022797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C
    Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.
    Wu L; Zhu H; Gai X; Wang Y
    J Prosthet Dent; 2014 Jan; 111(1):51-5. PubMed ID: 24161258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications.
    Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M
    Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting.
    Kanazawa M; Iwaki M; Minakuchi S; Nomura N
    J Prosthet Dent; 2014 Dec; 112(6):1441-7. PubMed ID: 25258261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy.
    Zheng Y; Huang C; Li Y; Gao J; Yang Y; Zhao S; Che H; Yang Y; Yao S; Li W; Zhou J; Zadpoor AA; Wang L
    Acta Biomater; 2024 Jul; 182():139-155. PubMed ID: 38750914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co-Cr alloy fabricated by selective laser melting.
    Ko KH; Kang HG; Huh YH; Park CJ; Cho LR
    J Mech Behav Biomed Mater; 2022 Feb; 126():105051. PubMed ID: 34959095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural and mechanical characterization of six Co-Cr alloys made by conventional casting and selective laser melting.
    Al Jabbari YS; Dimitriadis K; Sufyan A; Zinelis S
    J Prosthet Dent; 2024 Jul; ():. PubMed ID: 38955601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering.
    Soderlind J; Cihova M; Schäublin R; Risbud S; Löffler JF
    Acta Biomater; 2019 Oct; 98():67-80. PubMed ID: 31254685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additively manufactured biodegradable porous magnesium.
    Li Y; Zhou J; Pavanram P; Leeflang MA; Fockaert LI; Pouran B; Tümer N; Schröder KU; Mol JMC; Weinans H; Jahr H; Zadpoor AA
    Acta Biomater; 2018 Feb; 67():378-392. PubMed ID: 29242158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of microstructure and fatigue of cast versus selective laser-melted dental Co-Cr alloy.
    Wu M; Dong X; Qu Y; Yan J; Li N
    J Prosthet Dent; 2022 Aug; 128(2):218.e1-218.e7. PubMed ID: 35786348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process.
    Fousová M; Vojtěch D; Kubásek J; Jablonská E; Fojt J
    J Mech Behav Biomed Mater; 2017 May; 69():368-376. PubMed ID: 28167428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.
    Yan C; Hao L; Hussein A; Young P
    J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting.
    Ma S; Tang Q; Feng Q; Song J; Han X; Guo F
    J Mech Behav Biomed Mater; 2019 May; 93():158-169. PubMed ID: 30798182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds.
    Seyedraoufi ZS; Mirdamadi Sh
    J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Properties of High-Strength Cu-Cr-Zr Alloy Fabricated by Selective Laser Melting.
    Sun F; Liu P; Chen X; Zhou H; Guan P; Zhu B
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies.
    Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y
    Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison.
    Speirs M; Van Hooreweder B; Van Humbeeck J; Kruth JP
    J Mech Behav Biomed Mater; 2017 Jun; 70():53-59. PubMed ID: 28162939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.