These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 32022978)
1. NIR Light-Driving Barrier-Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. Xi D; Xiao M; Cao J; Zhao L; Xu N; Long S; Fan J; Shao K; Sun W; Yan X; Peng X Adv Mater; 2020 Mar; 32(11):e1907855. PubMed ID: 32022978 [TBL] [Abstract][Full Text] [Related]
2. Near-Infrared Light-Driving Organic Photothermal Agents with an 88.9% Photothermal Conversion Efficiency for Image-Guided Synergistic Phototherapy. Zhao X; Sun M; Cao X; Xu J; Li X; Zhao X; Lu H Adv Healthc Mater; 2024 Jul; 13(19):e2400201. PubMed ID: 38519419 [TBL] [Abstract][Full Text] [Related]
3. Making the Brightest Ones Dim: Maximizing the Photothermal Conversion Efficiency of BODIPY-Based Photothermal Agents. Kim G; Luo Y; Shin M; Bouffard J; Bae J; Kim Y Adv Healthc Mater; 2024 Jul; 13(19):e2400885. PubMed ID: 38573765 [TBL] [Abstract][Full Text] [Related]
4. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment. Xu Y; Wang S; Chen Z; Hu R; Li S; Zhao Y; Liu L; Qu J J Nanobiotechnology; 2021 Feb; 19(1):37. PubMed ID: 33541369 [TBL] [Abstract][Full Text] [Related]
5. Acceptor-donor-acceptor type organic photothermal agents with enhanced NIR absorption and photothermal conversion effect for cancer photothermal therapy. Sun M; Zhao X; Cao X; Li X; Xu J; Meng X; Lu H; Zhao X Talanta; 2024 Jul; 274():125991. PubMed ID: 38547836 [TBL] [Abstract][Full Text] [Related]
6. The tumor phototherapeutic application of nanoparticles constructed by the relationship between PTT/PDT efficiency and 2,6- and 3,5-substituted BODIPY derivatives. Yin J; Jiang X; Sui G; Du Y; Xing E; Shi R; Gu C; Wen X; Feng Y; Shan Z; Meng S J Mater Chem B; 2021 Sep; 9(36):7461-7471. PubMed ID: 34551049 [TBL] [Abstract][Full Text] [Related]
7. Electron-Withdrawing Substituents Enhance the Type I PDT and NIR-II Fluorescence of BODIPY J Aggregates for Bioimaging and Cancer Therapy. Zhu Y; Wu F; Zheng B; Yang Y; Yang J; Xiong H Nano Lett; 2024 Jul; 24(27):8287-8295. PubMed ID: 38941514 [TBL] [Abstract][Full Text] [Related]
8. BF Yang M; Ou X; Li J; Sun J; Zhao Z; Lam JWY; Fan J; Tang BZ Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407307. PubMed ID: 38868977 [TBL] [Abstract][Full Text] [Related]
9. Aggregation-Induced Emission-Active Organic Nanoagent with High Photothermal Conversion Efficiency for Near-Infrared Imaging-Guided Tumor Photothermal Therapy. Zhang Q; Li E; Zhang Y; Chen Y; Wang D; Wang S ACS Biomater Sci Eng; 2024 Oct; 10(10):6210-6217. PubMed ID: 39253844 [TBL] [Abstract][Full Text] [Related]
10. Conjugated BODIPY Oligomers with Controllable Near-Infrared Absorptions as Promising Phototheranostic Agents through Excited-State Intramolecular Rotations. Wu Q; Zhu Y; Fang X; Hao X; Jiao L; Hao E; Zhang W ACS Appl Mater Interfaces; 2020 Oct; 12(42):47208-47219. PubMed ID: 33035047 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient Far-Red/NIR-Absorbing Neutral Ir(III) Complex Micelles for Potent Photodynamic/Photothermal Therapy. Liu B; Jiao J; Xu W; Zhang M; Cui P; Guo Z; Deng Y; Chen H; Sun W Adv Mater; 2021 Aug; 33(32):e2100795. PubMed ID: 34219286 [TBL] [Abstract][Full Text] [Related]
12. Size-Dependent Photothermal Conversion and Photoluminescence of Theranostic NaNdF Ding L; Ren F; Liu Z; Jiang Z; Yun B; Sun Q; Li Z Bioconjug Chem; 2020 Feb; 31(2):340-351. PubMed ID: 31751118 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional organic nanomaterials with ultra-high photothermal conversion efficiency for photothermal therapy and inhibition of cancer metastasis. Yang XZ; Wen LF; Xu G; Lin HH; Wang S; Liu JY Bioorg Chem; 2023 Jan; 130():106220. PubMed ID: 36347088 [TBL] [Abstract][Full Text] [Related]
14. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy. Pan GY; Jia HR; Zhu YX; Wu FG Nanoscale; 2018 Jan; 10(4):2115-2127. PubMed ID: 29326993 [TBL] [Abstract][Full Text] [Related]
15. Near-Infrared absorbing J-Aggregates of boron dipyrromethene for high efficient photothermal therapy. Xia J; Li Z; Xie Z; Zheng M J Colloid Interface Sci; 2021 Oct; 599():476-483. PubMed ID: 33962208 [TBL] [Abstract][Full Text] [Related]
16. Easy but Efficient: Facile Approach to Molecule with Theoretically Justified Donor-Acceptor Structure for Effective Photothermal Conversion and Intravenous Photothermal Therapy. Zhong YH; Huang GF; Zhao SY; Chung LH; Zhang HT; Zheng JH; Yan YL; Ni WX; He J Adv Sci (Weinh); 2024 Jun; 11(24):e2309068. PubMed ID: 38477060 [TBL] [Abstract][Full Text] [Related]
17. Galactose conjugated boron dipyrromethene and hydrogen bonding promoted J-aggregates for efficiently targeted NIR-II fluorescence assistant photothermal therapy. Dang H; Tian Y; Cheng Q; Teng C; Xie K; Yan L J Colloid Interface Sci; 2022 Apr; 612():287-297. PubMed ID: 34995865 [TBL] [Abstract][Full Text] [Related]
18. Naphthofluorescein-based organic nanoparticles with superior stability for near-infrared photothermal therapy. An J; Tang S; Feng E; Tian M; Chen W; Chen M; Hong G; Peng X; Song F Nanoscale; 2022 Jul; 14(28):10051-10059. PubMed ID: 35792864 [TBL] [Abstract][Full Text] [Related]
19. NIR-Triggered Hyperthermal Effect of Polythiophene Nanoparticles Synthesized by Surfactant-Free Oxidative Polymerization Method on Colorectal Carcinoma Cells. Bhattarai DP; Kim BS Cells; 2020 Sep; 9(9):. PubMed ID: 32962169 [TBL] [Abstract][Full Text] [Related]
20. A Cyanine with 83.2% Photothermal Conversion Efficiency and Absorption Wavelengths over 1200 nm for Photothermal Therapy. Zhao L; Zhu H; Duo YY; Wang ZG; Pang DW; Liu SL Adv Healthc Mater; 2024 Aug; 13(20):e2304421. PubMed ID: 38780250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]