These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32023053)

  • 1. DeeplyTough: Learning Structural Comparison of Protein Binding Sites.
    Simonovsky M; Meyers J
    J Chem Inf Model; 2020 Apr; 60(4):2356-2366. PubMed ID: 32023053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.
    Pu L; Govindaraj RG; Lemoine JM; Wu HC; Brylinski M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006718. PubMed ID: 30716081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Protein-Binding Sites Using a Spherical Convolutional Neural Network.
    Scott OB; Gu J; Chan AWE
    J Chem Inf Model; 2022 Nov; 62(22):5383-5396. PubMed ID: 36341715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications.
    Feinstein J; Shi W; Ramanujam J; Brylinski M
    Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BionoiNet: ligand-binding site classification with off-the-shelf deep neural network.
    Shi W; Lemoine JM; Shawky AA; Singha M; Pu L; Yang S; Ramanujam J; Brylinski M
    Bioinformatics; 2020 May; 36(10):3077-3083. PubMed ID: 32053156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding site matching in rational drug design: algorithms and applications.
    Naderi M; Lemoine JM; Govindaraj RG; Kana OZ; Feinstein WP; Brylinski M
    Brief Bioinform; 2019 Nov; 20(6):2167-2184. PubMed ID: 30169563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ALLO: A tool to discriminate and prioritize allosteric pockets.
    Akbar R; Helms V
    Chem Biol Drug Des; 2018 Apr; 91(4):845-853. PubMed ID: 29250934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins.
    Govindaraj RG; Brylinski M
    BMC Bioinformatics; 2018 Mar; 19(1):91. PubMed ID: 29523085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LigVoxel: inpainting binding pockets using 3D-convolutional neural networks.
    Skalic M; Varela-Rial A; Jiménez J; Martínez-Rosell G; De Fabritiis G
    Bioinformatics; 2019 Jan; 35(2):243-250. PubMed ID: 29982392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation.
    Zhang H; Saravanan KM; Lin J; Liao L; Ng JT; Zhou J; Wei Y
    PeerJ; 2020; 8():e8864. PubMed ID: 32292649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.
    Liu Z; Cui Y; Xiong Z; Nasiri A; Zhang A; Hu J
    Sci Rep; 2019 Jan; 9(1):794. PubMed ID: 30692623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions.
    Torng W; Altman RB
    J Chem Inf Model; 2019 Oct; 59(10):4131-4149. PubMed ID: 31580672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QuoteTarget: A sequence-based transformer protein language model to identify potentially druggable protein targets.
    Chen J; Gu Z; Xu Y; Deng M; Lai L; Pei J
    Protein Sci; 2023 Feb; 32(2):e4555. PubMed ID: 36564866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving detection of protein-ligand binding sites with 3D segmentation.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Sci Rep; 2020 Mar; 10(1):5035. PubMed ID: 32193447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.
    Cerisier N; Regad L; Triki D; Camproux AC; Petitjean M
    J Comput Biol; 2017 Nov; 24(11):1134-1137. PubMed ID: 28570103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning structural motif representations for efficient protein structure search.
    Liu Y; Ye Q; Wang L; Peng J
    Bioinformatics; 2018 Sep; 34(17):i773-i780. PubMed ID: 30423083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel protein descriptor for the prediction of drug binding sites.
    Jiang M; Li Z; Bian Y; Wei Z
    BMC Bioinformatics; 2019 Sep; 20(1):478. PubMed ID: 31533611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.