These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32023054)

  • 1. Lipopolysaccharide Simulations Are Sensitive to Phosphate Charge and Ion Parameterization.
    Rice A; Rooney MT; Greenwood AI; Cotten ML; Wereszczynski J
    J Chem Theory Comput; 2020 Mar; 16(3):1806-1815. PubMed ID: 32023054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics.
    Wu EL; Engström O; Jo S; Stuhlsatz D; Yeom MS; Klauda JB; Widmalm G; Im W
    Biophys J; 2013 Sep; 105(6):1444-55. PubMed ID: 24047996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic Scale Effects of Lipopolysaccharide Modifications on Bacterial Outer Membrane Defenses.
    Rice A; Wereszczynski J
    Biophys J; 2018 Mar; 114(6):1389-1399. PubMed ID: 29590596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides.
    Gao Y; Lee J; Smith IPS; Lee H; Kim S; Qi Y; Klauda JB; Widmalm G; Khalid S; Im W
    J Chem Inf Model; 2021 Feb; 61(2):831-839. PubMed ID: 33442985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks.
    Adams PG; Lamoureux L; Swingle KL; Mukundan H; Montaño GA
    Biophys J; 2014 Jun; 106(11):2395-407. PubMed ID: 24896118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipopolysaccharide membrane building and simulation.
    Jo S; Wu EL; Stuhlsatz D; Klauda JB; MacKerell AD; Widmalm G; Im W
    Methods Mol Biol; 2015; 1273():391-406. PubMed ID: 25753722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models.
    Clifton LA; Skoda MW; Le Brun AP; Ciesielski F; Kuzmenko I; Holt SA; Lakey JH
    Langmuir; 2015; 31(1):404-12. PubMed ID: 25489959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational Dynamics of the Lipopolysaccharide from Escherichia coli O91 Revealed by Nuclear Magnetic Resonance Spectroscopy and Molecular Simulations.
    Blasco P; Patel DS; Engström O; Im W; Widmalm G
    Biochemistry; 2017 Jul; 56(29):3826-3839. PubMed ID: 28609625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural properties of the water/membrane interface of a bilayer built of the E. coli lipid A.
    Murzyn K; Pasenkiewicz-Gierula M
    J Phys Chem B; 2015 May; 119(18):5846-56. PubMed ID: 25867074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of
    Vaiwala R; Ayappa KG
    J Chem Theory Comput; 2024 Feb; 20(4):1704-1716. PubMed ID: 37676287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane.
    Paracini N; Schneck E; Imberty A; Micciulla S
    Adv Colloid Interface Sci; 2022 Mar; 301():102603. PubMed ID: 35093846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic Environment Affects Bacterial Lipopolysaccharide Packing and Function.
    Rahnamoun A; Kim K; Pedersen JA; Hernandez R
    Langmuir; 2020 Mar; 36(12):3149-3158. PubMed ID: 32069057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Parameterization of Amine-Carboxylate and Amine-Phosphate Interactions for Molecular Dynamics Simulations Using the CHARMM and AMBER Force Fields.
    Yoo J; Aksimentiev A
    J Chem Theory Comput; 2016 Jan; 12(1):430-43. PubMed ID: 26632962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis.
    Hammer MU; Brauser A; Olak C; Brezesinski G; Goldmann T; Gutsmann T; Andrä J
    Biochem J; 2010 Apr; 427(3):477-88. PubMed ID: 20187872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Barriers for Antimicrobial Penetration in Complex Asymmetric Bacterial Membranes: A Case Study with Thymol.
    Sharma P; Parthasarathi S; Patil N; Waskar M; Raut JS; Puranik M; Ayappa KG; Basu JK
    Langmuir; 2020 Aug; 36(30):8800-8814. PubMed ID: 32609530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulations Predict the Pathways via Which Pristine Fullerenes Penetrate Bacterial Membranes.
    Hsu PC; Jefferies D; Khalid S
    J Phys Chem B; 2016 Nov; 120(43):11170-11179. PubMed ID: 27712070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation Study of Occk5 Functional Properties in Pseudomonas aeruginosa Outer Membranes.
    Lee J; Pothula KR; Kleinekathöfer U; Im W
    J Phys Chem B; 2018 Aug; 122(34):8185-8192. PubMed ID: 30075620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics.
    Snyder DS; McIntosh TJ
    Biochemistry; 2000 Sep; 39(38):11777-87. PubMed ID: 10995246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.