These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32023094)
1. Interactions of Designed Trp-Containing Antimicrobial Peptides with DNA of Multidrug-Resistant Han X; Kou Z; Jiang F; Sun X; Shang D DNA Cell Biol; 2021 Feb; 40(2):414-424. PubMed ID: 32023094 [TBL] [Abstract][Full Text] [Related]
2. The antibacterial activity and mechanisms of Trp-containing peptides against multidrug-resistant Pseudomonas aeruginosa persisters. Li M; Sun X; Zhao L; Du W; Shang D Biochimie; 2024 Oct; 225():133-145. PubMed ID: 38815647 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial activity of chensinin-1b, a peptide with a random coil conformation, against multiple-drug-resistant Pseudomonas aeruginosa. Shang D; Meng X; Zhang D; Kou Z Biochem Pharmacol; 2017 Nov; 143():65-78. PubMed ID: 28756209 [TBL] [Abstract][Full Text] [Related]
4. Trp-Containing Antibacterial Peptides Impair Quorum Sensing and Biofilm Development in Multidrug-Resistant Shang D; Han X; Du W; Kou Z; Jiang F Front Microbiol; 2021; 12():611009. PubMed ID: 33643239 [No Abstract] [Full Text] [Related]
5. Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. Yang M; Zhang C; Zhang MZ; Zhang S BMC Microbiol; 2018 Jun; 18(1):54. PubMed ID: 29871599 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. Bi X; Wang C; Ma L; Sun Y; Shang D J Appl Microbiol; 2013 Sep; 115(3):663-72. PubMed ID: 23710779 [TBL] [Abstract][Full Text] [Related]
7. Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of Grishin SY; Domnin PA; Kravchenko SV; Azev VN; Mustaeva LG; Gorbunova EY; Kobyakova MI; Surin AK; Makarova MA; Kurpe SR; Fadeev RS; Vasilchenko AS; Firstova VV; Ermolaeva SA; Galzitskaya OV Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575940 [TBL] [Abstract][Full Text] [Related]
8. De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Deslouches B; Phadke SM; Lazarevic V; Cascio M; Islam K; Montelaro RC; Mietzner TA Antimicrob Agents Chemother; 2005 Jan; 49(1):316-22. PubMed ID: 15616311 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations. Casciaro B; Cappiello F; Verrusio W; Cacciafesta M; Mangoni ML Curr Top Med Chem; 2020; 20(14):1264-1273. PubMed ID: 32338221 [TBL] [Abstract][Full Text] [Related]
10. Pse-T2, an Antimicrobial Peptide with High-Level, Broad-Spectrum Antimicrobial Potency and Skin Biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa Infection. Kang HK; Seo CH; Luchian T; Park Y Antimicrob Agents Chemother; 2018 Dec; 62(12):. PubMed ID: 30323036 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Cetacean Proline-Rich Antimicrobial Peptides Displaying Activity against ESKAPE Pathogens. Sola R; Mardirossian M; Beckert B; Sanghez De Luna L; Prickett D; Tossi A; Wilson DN; Scocchi M Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036159 [TBL] [Abstract][Full Text] [Related]
12. Salt-resistant short antimicrobial peptides. Mohanram H; Bhattacharjya S Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911 [TBL] [Abstract][Full Text] [Related]
13. Characterization of an antibacterial dodecapeptide from pig as a potential food preservative and its antibacterial mechanism. Lyu Y; Yang C; Chen T; Shang L; Yang Y; Li J; Shan A; Xiang W; Cheng B; Zhang L Food Funct; 2020 May; 11(5):4090-4102. PubMed ID: 32342079 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Bi X; Wang C; Dong W; Zhu W; Shang D J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141 [TBL] [Abstract][Full Text] [Related]
15. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide. Zhu X; Ma Z; Wang J; Chou S; Shan A PLoS One; 2014; 9(12):e114605. PubMed ID: 25494332 [TBL] [Abstract][Full Text] [Related]
16. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function. Rydberg HA; Carlsson N; Nordén B Biochem Biophys Res Commun; 2012 Oct; 427(2):261-5. PubMed ID: 22989747 [TBL] [Abstract][Full Text] [Related]
17. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Lima PG; Oliveira JTA; Amaral JL; Freitas CDT; Souza PFN Life Sci; 2021 Aug; 278():119647. PubMed ID: 34043990 [TBL] [Abstract][Full Text] [Related]
18. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria. Camó C; Torné M; Besalú E; Rosés C; Cirac AD; Moiset G; Badosa E; Bardají E; Montesinos E; Planas M; Feliu L Molecules; 2017 Oct; 22(11):. PubMed ID: 29072606 [TBL] [Abstract][Full Text] [Related]
19. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Akbari R; Hakemi Vala M; Hashemi A; Aghazadeh H; Sabatier JM; Pooshang Bagheri K Amino Acids; 2018 Sep; 50(9):1231-1243. PubMed ID: 29905903 [TBL] [Abstract][Full Text] [Related]
20. Design of Bactericidal Peptides Against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Cruz J; Rondon-Villarreal P; Torres RG; Urquiza M; Guzman F; Alvarez C; Abengozar MA; Sierra DA; Rivas L; Fernandez-Lafuente R; Ortiz CC Med Chem; 2018; 14(7):741-752. PubMed ID: 29737262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]