These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655. Tan J; Kan N; Wang W; Ling J; Qu G; Jin J; Shao Y; Liu G; Chen H Cell Biochem Biophys; 2015 Jun; 72(2):417-28. PubMed ID: 25561288 [TBL] [Abstract][Full Text] [Related]
9. A Chimeric Two-Component Regulatory System-Based Escherichia coli Biosensor Engineered to Detect Glutamate. Ravikumar S; David Y; Park SJ; Choi JI Appl Biochem Biotechnol; 2018 Oct; 186(2):335-349. PubMed ID: 29611135 [TBL] [Abstract][Full Text] [Related]
11. Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes. Reed B; Blazeck J; Alper H J Biotechnol; 2012 Apr; 158(3):75-9. PubMed ID: 22326628 [TBL] [Abstract][Full Text] [Related]
12. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Machado LF; Dixon N Chem Commun (Camb); 2016 Sep; 52(76):11402-11405. PubMed ID: 27722239 [TBL] [Abstract][Full Text] [Related]
13. Engineering Modular and Highly Sensitive Cell-Based Biosensors for Aromatic Contaminant Monitoring and High-Throughput Enzyme Screening. Sun S; Peng K; Sun S; Wang M; Shao Y; Li L; Xiang J; Sedjoah RA; Xin Z ACS Synth Biol; 2023 Mar; 12(3):877-891. PubMed ID: 36821745 [TBL] [Abstract][Full Text] [Related]
14. E. coli biosensor based on modular GFP and luxI/luxR cyclic amplification circuit for sensitive detection of lysine. Wang W; Zhang J; Tao H; Lv X; Deng Y; Li X Anal Bioanal Chem; 2022 Dec; 414(29-30):8299-8307. PubMed ID: 36253476 [TBL] [Abstract][Full Text] [Related]
15. An Improved Whole-Cell Biosensor for the Discovery of Lignin-Transforming Enzymes in Functional Metagenomic Screens. Ho JCH; Pawar SV; Hallam SJ; Yadav VG ACS Synth Biol; 2018 Feb; 7(2):392-398. PubMed ID: 29182267 [TBL] [Abstract][Full Text] [Related]
16. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Tao HC; Peng ZW; Li PS; Yu TA; Su J Biotechnol Lett; 2013 Aug; 35(8):1253-8. PubMed ID: 23609235 [TBL] [Abstract][Full Text] [Related]
17. Development of N-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR. Peters G; De Paepe B; De Wannemaeker L; Duchi D; Maertens J; Lammertyn J; De Mey M Biotechnol Bioeng; 2018 Jul; 115(7):1855-1865. PubMed ID: 29532902 [TBL] [Abstract][Full Text] [Related]
18. An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences. Yu Q; Li Y; Ma A; Liu W; Wang H; Zhuang G Anal Bioanal Chem; 2011 Nov; 401(9):2891-8. PubMed ID: 21947012 [TBL] [Abstract][Full Text] [Related]
19. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. Wu Y; Wang CW; Wang D; Wei N ACS Synth Biol; 2021 Feb; 10(2):333-344. PubMed ID: 33496568 [TBL] [Abstract][Full Text] [Related]
20. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors. Du R; Guo M; He X; Huang K; Luo Y; Xu W Anal Chim Acta; 2019 Nov; 1084():85-92. PubMed ID: 31519238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]