These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32023410)

  • 1. Development of High-Performance Whole Cell Biosensors Aided by Statistical Modeling.
    Berepiki A; Kent R; Machado LFM; Dixon N
    ACS Synth Biol; 2020 Mar; 9(3):576-589. PubMed ID: 32023410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocatechuic acid production from lignin-associated phenolics.
    Upadhyay P; Lali A
    Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering.
    Verma BK; Mannan AA; Zhang F; Oyarzún DA
    ACS Synth Biol; 2022 Jan; 11(1):228-240. PubMed ID: 34968029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, Evolution, and Characterization of a Xylose Biosensor in
    Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW
    ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Component Biosensors: Unveiling the Mechanisms of Predictable Tunability.
    Gonzalez-Flo E; Alaball ME; Macia J
    ACS Synth Biol; 2020 Jun; 9(6):1328-1335. PubMed ID: 32369693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655.
    Tan J; Kan N; Wang W; Ling J; Qu G; Jin J; Shao Y; Liu G; Chen H
    Cell Biochem Biophys; 2015 Jun; 72(2):417-28. PubMed ID: 25561288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Chimeric Two-Component Regulatory System-Based Escherichia coli Biosensor Engineered to Detect Glutamate.
    Ravikumar S; David Y; Park SJ; Choi JI
    Appl Biochem Biotechnol; 2018 Oct; 186(2):335-349. PubMed ID: 29611135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of trans-ferulic and p-coumaric acid by Acinetobacter calcoaceticus DSM 586.
    Delneri D; Degrassi G; Rizzo R; Bruschi CV
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):363-7. PubMed ID: 7599157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes.
    Reed B; Blazeck J; Alper H
    J Biotechnol; 2012 Apr; 158(3):75-9. PubMed ID: 22326628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks.
    Machado LF; Dixon N
    Chem Commun (Camb); 2016 Sep; 52(76):11402-11405. PubMed ID: 27722239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Modular and Highly Sensitive Cell-Based Biosensors for Aromatic Contaminant Monitoring and High-Throughput Enzyme Screening.
    Sun S; Peng K; Sun S; Wang M; Shao Y; Li L; Xiang J; Sedjoah RA; Xin Z
    ACS Synth Biol; 2023 Mar; 12(3):877-891. PubMed ID: 36821745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E. coli biosensor based on modular GFP and luxI/luxR cyclic amplification circuit for sensitive detection of lysine.
    Wang W; Zhang J; Tao H; Lv X; Deng Y; Li X
    Anal Bioanal Chem; 2022 Dec; 414(29-30):8299-8307. PubMed ID: 36253476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Improved Whole-Cell Biosensor for the Discovery of Lignin-Transforming Enzymes in Functional Metagenomic Screens.
    Ho JCH; Pawar SV; Hallam SJ; Yadav VG
    ACS Synth Biol; 2018 Feb; 7(2):392-398. PubMed ID: 29182267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR.
    Tao HC; Peng ZW; Li PS; Yu TA; Su J
    Biotechnol Lett; 2013 Aug; 35(8):1253-8. PubMed ID: 23609235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of N-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR.
    Peters G; De Paepe B; De Wannemaeker L; Duchi D; Maertens J; Lammertyn J; De Mey M
    Biotechnol Bioeng; 2018 Jul; 115(7):1855-1865. PubMed ID: 29532902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences.
    Yu Q; Li Y; Ma A; Liu W; Wang H; Zhuang G
    Anal Bioanal Chem; 2011 Nov; 401(9):2891-8. PubMed ID: 21947012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens.
    Wu Y; Wang CW; Wang D; Wei N
    ACS Synth Biol; 2021 Feb; 10(2):333-344. PubMed ID: 33496568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors.
    Du R; Guo M; He X; Huang K; Luo Y; Xu W
    Anal Chim Acta; 2019 Nov; 1084():85-92. PubMed ID: 31519238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.