BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32023519)

  • 21. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction.
    Allan IJ; Semple KT; Hare R; Reid BJ
    Environ Pollut; 2006 Nov; 144(2):562-71. PubMed ID: 16545896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil.
    Oleszczuk P
    Chemosphere; 2006 Nov; 65(9):1616-26. PubMed ID: 16624376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of phenanthrene bioavailability in aged and unaged soils by mild extraction.
    Khan MI; Cheema SA; Shen C; Zhang C; Tang X; Shi J; Chen X; Park J; Chen Y
    Environ Monit Assess; 2012 Jan; 184(1):549-59. PubMed ID: 21866434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PAHs content of sewage sludge in Europe and its use as soil fertilizer.
    Suciu NA; Lamastra L; Trevisan M
    Waste Manag; 2015 Jul; 41():119-27. PubMed ID: 25872863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profile of polycyclic aromatic hydrocarbons in digested sewage sludge.
    Khillare PS; Sattawan VK; Jyethi DS
    Environ Technol; 2020 Mar; 41(7):842-851. PubMed ID: 30118384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerated degradation of PAHs using edaphic biostimulants obtained from sewage sludge and chicken feathers.
    Rodríguez-Morgado B; Gómez I; Parrado J; García C; Hernández T; Tejada M
    J Hazard Mater; 2015 Dec; 300():235-242. PubMed ID: 26188866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.
    Li S; Pi Y; Bao M; Zhang C; Zhao D; Li Y; Sun P; Lu J
    Mar Pollut Bull; 2015 Dec; 101(1):219-225. PubMed ID: 26494247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extractability and crop transfer of potentially toxic elements from mediterranean agricultural soils following long-term sewage sludge applications as a fertilizer replacement to barley and maize crops.
    Iglesias M; Marguí E; Camps F; Hidalgo M
    Waste Manag; 2018 May; 75():312-318. PubMed ID: 29395735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative techniques to HPCD to evaluate the bioaccessible fraction of soil-associated PAHs and correlation to biodegradation efficiency.
    Crampon M; Bodilis J; Le Derf F; Portet-Koltalo F
    J Hazard Mater; 2016 Aug; 314():220-229. PubMed ID: 27136727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil.
    Reid BJ; Stokes JD; Jones KC; Semple KT
    Environ Toxicol Chem; 2004 Mar; 23(3):550-6. PubMed ID: 15285345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of sludge conditioning treatment on the bioavailability of pyrene in sewage sludge.
    Zhou W; Lu Y; Jiang S; Xiao Y; Zheng G; Zhou L
    Ecotoxicol Environ Saf; 2018 Nov; 163():196-204. PubMed ID: 30055384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China.
    Li X; Li P; Lin X; Gong Z; Fan S; Zheng L; Verkhozina EA
    Environ Monit Assess; 2008 Aug; 143(1-3):257-65. PubMed ID: 17885816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration.
    Northcott GL; Jones KC
    Environ Sci Technol; 2001 Mar; 35(6):1103-10. PubMed ID: 11347921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential for phytoremediation of nonylphenol from sewage sludge.
    Liu Q; Zhou Z; Zhou S; Lei Y; Zhao K; Zhao T; Wu Q; Qiu J
    J Environ Qual; 2020 Mar; 49(2):346-357. PubMed ID: 33016421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soil bioremediation by cyclodextrins. A review.
    Morillo E; Madrid F; Lara-Moreno A; Villaverde J
    Int J Pharm; 2020 Dec; 591():119943. PubMed ID: 33065221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reuse of biosolids on agricultural land: Critical issues and perspective.
    Collivignarelli MC; Abbà A; Benigna I
    Water Environ Res; 2020 Jan; 92(1):11-25. PubMed ID: 31385641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioleaching conditioning increased the bioavailability of polycyclic aromatic hydrocarbons to promote their removal during co-composting of industrial and municipal sewage sludges.
    Lu Y; Zheng G; Zhou W; Wang J; Zhou L
    Sci Total Environ; 2019 May; 665():1073-1082. PubMed ID: 30893739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Movement of water and heavy metals (Zn, Cu, Pb and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions.
    Gove L; Cooke CM; Nicholson FA; Beck AJ
    Bioresour Technol; 2001 Jun; 78(2):171-9. PubMed ID: 11333037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate of (14)C-organic pollutant residues in composted sludge after application to soil.
    Haudin CS; Zhang Y; Dumény V; Lashermes G; Bergheaud V; Barriuso E; Houot S
    Chemosphere; 2013 Aug; 92(10):1280-5. PubMed ID: 23545187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.