These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32023546)

  • 21. Ice slurry ingestion increases running time in the heat.
    Dugas J
    Clin J Sport Med; 2011 Nov; 21(6):541-2. PubMed ID: 22064722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal break structures and cooling strategies to mitigate heat stress during a Rugby League match simulation.
    Graham C; Lynch GP; English T; Hospers L; Jay O
    J Sci Med Sport; 2021 Aug; 24(8):793-799. PubMed ID: 34112612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Comparison of Mixed-Method Cooling Interventions on Preloaded Running Performance in the Heat.
    Stevens CJ; Bennett KJ; Sculley DV; Callister R; Taylor L; Dascombe BJ
    J Strength Cond Res; 2017 Mar; 31(3):620-629. PubMed ID: 27379961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion.
    Siegel R; Maté J; Watson G; Nosaka K; Laursen PB
    J Sports Sci; 2012; 30(2):155-65. PubMed ID: 22132792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of airflow for physiologic and ergogenic effects of precooling.
    Morrison SA; Cheung S; Cotter JD
    J Athl Train; 2014; 49(5):632-9. PubMed ID: 25144598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of fluid temperature and form on endurance performance in the heat.
    Tan PM; Lee JK
    Scand J Med Sci Sports; 2015 Jun; 25 Suppl 1():39-51. PubMed ID: 25943655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extending work tolerance time in the heat in protective ensembles with pre- and per-cooling methods.
    Maley MJ; Minett GM; Bach AJE; Stewart KL; Stewart IB
    Appl Ergon; 2020 May; 85():103064. PubMed ID: 32174352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Athlete Medical Services at the Marathon and Race Walking Events During Tokyo 2020 Olympics.
    Sugawara M; Manabe Y; Yamasawa F; Hosokawa Y
    Front Sports Act Living; 2022; 4():872475. PubMed ID: 35529419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-play optimal cooling for outdoor match-play tennis in the heat.
    Naito T; Nakamura M; Muraishi K; Eda N; Ando K; Takemura A; Akazawa N; Hasegawa H; Takahashi H
    Eur J Sport Sci; 2022 Mar; 22(3):326-335. PubMed ID: 33393422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooling athletes before competition in the heat: comparison of techniques and practical considerations.
    Quod MJ; Martin DT; Laursen PB
    Sports Med; 2006; 36(8):671-82. PubMed ID: 16869709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of Physiological Strain Under a Hot and Humid Environment by a Hybrid Cooling Vest.
    Chan APC; Yang Y; Wong FKW; Yam MCH; Wong DP; Song WF
    J Strength Cond Res; 2019 May; 33(5):1429-1436. PubMed ID: 28195970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of thermal sensation on exercise performance in the heat: a Thermo Tokyo sub-study.
    Kroesen SH; de Korte JQ; Hopman MTE; Bongers CCWG; Eijsvogels TMH
    Eur J Appl Physiol; 2022 Feb; 122(2):437-446. PubMed ID: 34797439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apparent temperature and heat-related illnesses during international athletic championships: A prospective cohort study.
    Hollander K; Klöwer M; Richardson A; Navarro L; Racinais S; Scheer V; Murray A; Branco P; Timpka T; Junge A; Edouard P
    Scand J Med Sci Sports; 2021 Nov; 31(11):2092-2102. PubMed ID: 34333808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of menstrual phase and arid vs. humid heat stress on autonomic and behavioural thermoregulation during exercise in trained but unacclimated women.
    Lei TH; Stannard SR; Perry BG; Schlader ZJ; Cotter JD; Mündel T
    J Physiol; 2017 May; 595(9):2823-2837. PubMed ID: 27900769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of ice slurry ingestion before exertion in Wildland firefighting gear.
    Pryor RR; Suyama J; Guyette FX; Reis SE; Hostler D
    Prehosp Emerg Care; 2015; 19(2):241-6. PubMed ID: 25290244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat.
    Morris NB; Coombs G; Jay O
    Med Sci Sports Exerc; 2016 Jan; 48(1):114-22. PubMed ID: 26258857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rectal Temperature Cooling Using 2 Cold-Water Immersion Preparation Strategies.
    Miller KC; Launstein ED; Glovatsky RM
    J Athl Train; 2023 Apr; 58(4):355-360. PubMed ID: 36094578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.
    Caldwell JN; van den Heuvel AMJ; Kerry P; Clark MJ; Peoples GE; Taylor NAS
    Exp Physiol; 2018 Apr; 103(4):512-522. PubMed ID: 29345019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Threshold Ambient Temperature for the Use of Precooling to Improve Cycling Time-Trial Performance.
    Faulkner SH; Broekhuijzen I; Raccuglia M; Hupperets M; Hodder SG; Havenith G
    Int J Sports Physiol Perform; 2019 Mar; 14(3):323-330. PubMed ID: 30160552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ice Slurry Ingestion and Physiological Strain During Exercise in Non-Compensable Heat Stress.
    Ng J; Wingo JE; Bishop PA; Casey JC; Aldrich EK
    Aerosp Med Hum Perform; 2018 May; 89(5):434-441. PubMed ID: 29673428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.