These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32023848)

  • 21. Protein-Protein Interactions Prediction via Multimodal Deep Polynomial Network and Regularized Extreme Learning Machine.
    Lei H; Wen Y; You Z; Elazab A; Tan EL; Zhao Y; Lei B
    IEEE J Biomed Health Inform; 2019 May; 23(3):1290-1303. PubMed ID: 29994278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A deep learning framework for identifying essential proteins based on multiple biological information.
    Yue Y; Ye C; Peng PY; Zhai HX; Ahmad I; Xia C; Wu YZ; Zhang YH
    BMC Bioinformatics; 2022 Aug; 23(1):318. PubMed ID: 35927611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological feature generation for link prediction in biological networks.
    Temiz M; Bakir-Gungor B; Güner Şahan P; Coskun M
    PeerJ; 2023; 11():e15313. PubMed ID: 37187525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying mouse developmental essential genes using machine learning.
    Tian D; Wenlock S; Kabir M; Tzotzos G; Doig AJ; Hentges KE
    Dis Model Mech; 2018 Dec; 11(12):. PubMed ID: 30563825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M; Lu Y; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting essential proteins from protein-protein interactions using order statistics.
    Zhang Z; Ruan J; Gao J; Wu FX
    J Theor Biol; 2019 Nov; 480():274-283. PubMed ID: 31251944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of a 26‑feature gene support vector machine classifier for smoking and non‑smoking lung adenocarcinoma sample classification.
    Yang L; Sun L; Wang W; Xu H; Li Y; Zhao JY; Liu DZ; Wang F; Zhang LY
    Mol Med Rep; 2018 Feb; 17(2):3005-3013. PubMed ID: 29257283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Method for Identifying Essential Genes by Fusing Dynamic Protein⁻Protein Interactive Networks.
    Zhang F; Peng W; Yang Y; Dai W; Song J
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30626157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishment of a SVM classifier to predict recurrence of ovarian cancer.
    Zhou J; Li L; Wang L; Li X; Xing H; Cheng L
    Mol Med Rep; 2018 Oct; 18(4):3589-3598. PubMed ID: 30106117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of comorbid diseases using weighted geometric embedding of human interactome.
    Akram P; Liao L
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):161. PubMed ID: 31888634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HELP: A computational framework for labelling and predicting human common and context-specific essential genes.
    Granata I; Maddalena L; Manzo M; Guarracino MR; Giordano M
    PLoS Comput Biol; 2024 Sep; 20(9):e1012076. PubMed ID: 39331694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks.
    Palukuri MV; Marcotte EM
    PLoS One; 2021; 16(12):e0262056. PubMed ID: 34972161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating node embeddings and biological annotations for genes to predict disease-gene associations.
    Ata SK; Ou-Yang L; Fang Y; Kwoh CK; Wu M; Li XL
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):138. PubMed ID: 30598097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins.
    Li G; Li M; Wang J; Li Y; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1451-1458. PubMed ID: 30596582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks.
    Peng W; Wang J; Wang W; Liu Q; Wu FX; Pan Y
    BMC Syst Biol; 2012 Jul; 6():87. PubMed ID: 22808943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.