These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32023975)

  • 1. SoilCam: A Fully Automated Minirhizotron using Multispectral Imaging for Root Activity Monitoring.
    Rahman G; Sohag H; Chowdhury R; Wahid KA; Dinh A; Arcand M; Vail S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network "RootDetector".
    Peters B; Blume-Werry G; Gillert A; Schwieger S; von Lukas UF; Kreyling J
    Sci Rep; 2023 Jan; 13(1):1399. PubMed ID: 36697423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants.
    Rajurkar AB; McCoy SM; Ruhter J; Mulcrone J; Freyfogle L; Leakey ADB
    Plant Methods; 2022 Mar; 18(1):39. PubMed ID: 35346269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing fine root research with minirhizotrons.
    Johnson MG; Tingey DT; Phillips DL; Storm MJ
    Environ Exp Bot; 2001 Jun; 45(3):263-289. PubMed ID: 11323033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic discrimination of fine roots in minirhizotron images.
    Zeng G; Birchfield ST; Wells CE
    New Phytol; 2008; 177(2):549-557. PubMed ID: 18042202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EnRoot: a narrow-diameter, inexpensive and partially 3D-printable minirhizotron for imaging fine root production.
    Arnaud M; Baird AJ; Morris PJ; Harris A; Huck JJ
    Plant Methods; 2019; 15():101. PubMed ID: 31467587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline.
    Bauer FM; Lärm L; Morandage S; Lobet G; Vanderborght J; Vereecken H; Schnepf A
    Plant Phenomics; 2022; 2022():9758532. PubMed ID: 35693120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RootGraph: a graphic optimization tool for automated image analysis of plant roots.
    Cai J; Zeng Z; Connor JN; Huang CY; Melino V; Kumar P; Miklavcic SJ
    J Exp Bot; 2015 Nov; 66(21):6551-62. PubMed ID: 26224880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-automated Root Image Analysis (saRIA).
    Narisetti N; Henke M; Seiler C; Shi R; Junker A; Altmann T; Gladilin E
    Sci Rep; 2019 Dec; 9(1):19674. PubMed ID: 31873104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of minirhizotron in fine root studies].
    Shi J; Yu L; Yu S; Han Y; Wang Z; Guo D
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):715-9. PubMed ID: 16836108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GiA Roots: software for the high throughput analysis of plant root system architecture.
    Galkovskyi T; Mileyko Y; Bucksch A; Moore B; Symonova O; Price CA; Topp CN; Iyer-Pascuzzi AS; Zurek PR; Fang S; Harer J; Benfey PN; Weitz JS
    BMC Plant Biol; 2012 Jul; 12():116. PubMed ID: 22834569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive minirhizotron for pepper roots observation and its installation based on root system architecture traits.
    Lu W; Wang X; Wang F
    Plant Methods; 2019; 15():29. PubMed ID: 30949230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of cotton roots in high-resolution minirhizotron images based on improved OCRNet.
    Huang Y; Yan J; Zhang Y; Ye W; Zhang C; Gao P; Lv X
    Front Plant Sci; 2023; 14():1147034. PubMed ID: 37235030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traceable calibration, performance metrics, and uncertainty estimates of minirhizotron digital imagery for fine-root measurements.
    Roberti JA; SanClements MD; Loescher HW; Ayres E
    PLoS One; 2014; 9(11):e112362. PubMed ID: 25391023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RSAtrace3D: robust vectorization software for measuring monocot root system architecture.
    Teramoto S; Tanabata T; Uga Y
    BMC Plant Biol; 2021 Aug; 21(1):398. PubMed ID: 34433428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hand-held mosaicked multispectral imaging device for early stage pressure ulcer detection.
    Qi H; Kong L; Wang C; Miao L
    J Med Syst; 2011 Oct; 35(5):895-904. PubMed ID: 20703688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frequency root dynamics: sampling and interpretation using replicated robotic minirhizotrons.
    Nair R; Strube M; Hertel M; Kolle O; Rolo V; Migliavacca M
    J Exp Bot; 2023 Feb; 74(3):769-786. PubMed ID: 36273326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Direct Depth Estimation and Synthesis Stereo for Single Image Plant Root Reconstruction.
    Lu Y; Wang Y; Parikh D; Khan A; Lu G
    IEEE Trans Image Process; 2021; 30():4883-4893. PubMed ID: 33877972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.
    Wasson A; Bischof L; Zwart A; Watt M
    J Exp Bot; 2016 Feb; 67(4):1033-43. PubMed ID: 26826219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complete system for 3D reconstruction of roots for phenotypic analysis.
    Kumar P; Cai J; Miklavcic SJ
    Adv Exp Med Biol; 2015; 823():249-70. PubMed ID: 25381112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.