These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 32024161)
1. Physiological Responses to the Foliar Application of Synthetic Resistance Elicitors in Cape Gooseberry Seedlings Infected with Chávez-Arias CC; Gómez-Caro S; Restrepo-Díaz H Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32024161 [TBL] [Abstract][Full Text] [Related]
2. Physiological Response of Cape Gooseberry Seedlings to Three Biological Control Agents Under Chaves-Gómez JL; Chavez-Arias CC; Cotes Prado AM; Gómez-Caro S; Restrepo-Díaz H Plant Dis; 2020 Feb; 104(2):388-397. PubMed ID: 31809256 [TBL] [Abstract][Full Text] [Related]
3. Putative Novel Effector Genes Revealed by the Genomic Analysis of the Phytopathogenic Fungus Simbaqueba J; Rodríguez EA; Burbano-David D; González C; Caro-Quintero A Front Microbiol; 2020; 11():593915. PubMed ID: 33537009 [TBL] [Abstract][Full Text] [Related]
4. Physiological Response of Cape Gooseberry Plants to Mendoza-Vargas LA; Villamarín-Romero WP; Cotrino-Tierradentro AS; Ramírez-Gil JG; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S Front Plant Sci; 2021; 12():702842. PubMed ID: 34421951 [TBL] [Abstract][Full Text] [Related]
5. Screening of Different Cháves-Gómez JL; Becerra-Mutis LM; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S Front Plant Sci; 2020; 11():806. PubMed ID: 32655597 [TBL] [Abstract][Full Text] [Related]
6. Effects of Fengycins and Iturins on Moreno-Velandia CA; Ongena M; Cotes AM Phytopathology; 2021 Dec; 111(12):2227-2237. PubMed ID: 34032523 [No Abstract] [Full Text] [Related]
7. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Simbaqueba J; Catanzariti AM; González C; Jones DA Mol Plant Pathol; 2018 Oct; 19(10):2302-2318. PubMed ID: 29786161 [TBL] [Abstract][Full Text] [Related]
8. Mixtures of Biological Control Agents and Organic Additives Improve Physiological Behavior in Cape Gooseberry Plants under Vascular Wilt Disease. Chaves-Gómez JL; Chávez-Arias CC; Prado AMC; Gómez-Caro S; Restrepo-Díaz H Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685868 [TBL] [Abstract][Full Text] [Related]
10. Studying the microbiome of suppressive soils against vascular wilt, caused by Fusarium oxysporum in cape gooseberry (Physalis peruviana). Bautista D; García D; Dávila L; Caro-Quintero A; Cotes AM; González A; Zuluaga AP Environ Microbiol Rep; 2023 Dec; 15(6):757-768. PubMed ID: 37675926 [TBL] [Abstract][Full Text] [Related]
11. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). Osorio-Guarín JA; Enciso-Rodríguez FE; González C; Fernández-Pozo N; Mueller LA; Barrero LS BMC Genomics; 2016 Mar; 17():248. PubMed ID: 26988219 [TBL] [Abstract][Full Text] [Related]
12. Foliar Growth Regulator Sprays Induced Tolerance to Combined Heat Stress by Enhancing Physiological and Biochemical Responses in Rice. Pantoja-Benavides AD; Garces-Varon G; Restrepo-Díaz H Front Plant Sci; 2021; 12():702892. PubMed ID: 34367222 [TBL] [Abstract][Full Text] [Related]
13. Combining transcriptome analysis and GWAS for identification and validation of marker genes in the Garzón-Martínez GA; García-Arias FL; Enciso-Rodríguez FE; Soto-Suárez M; González C; Bombarely A; Barrero LS; Osorio Guarín JA PeerJ; 2021; 9():e11135. PubMed ID: 33828924 [TBL] [Abstract][Full Text] [Related]
14. Controlling Fusarium wilt of cape gooseberry by microbial consortia. García D; González-Almario A; Cotes AM Lett Appl Microbiol; 2023 Jul; 76(7):. PubMed ID: 37348479 [TBL] [Abstract][Full Text] [Related]
15. Foliar cytokinins or brassinosteroids applications influence the rice plant acclimatization to combined heat stress. Pantoja-Benavides AD; Garces-Varon G; Restrepo-Díaz H Front Plant Sci; 2022; 13():983276. PubMed ID: 36618669 [TBL] [Abstract][Full Text] [Related]
16. Beet Root-Rot Inducing Isolates of Fusarium oxysporum from Colorado and Montana. Hanson LE; Jacobsen BJ Plant Dis; 2006 Feb; 90(2):247. PubMed ID: 30786427 [TBL] [Abstract][Full Text] [Related]
17. Fusarium Wilt Caused by Fusarium oxysporum on Lettuce in Espirito Santo, Brazil. Ventura JA; Costa H Plant Dis; 2008 Jun; 92(6):976. PubMed ID: 30769761 [TBL] [Abstract][Full Text] [Related]
18. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Izquierdo-García LF; González-Almario A; Cotes AM; Moreno-Velandia CA Sci Rep; 2020 Apr; 10(1):6857. PubMed ID: 32321998 [TBL] [Abstract][Full Text] [Related]
19. Inoculum Densities of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita in Relation to the Development of Fusarium Wilt and the Phenology of Cotton Plants (Gossypium hirsutum). Devay JE; Gutierrez AP; Pullman GS; Wakeman RJ; Garber RH; Jeffers DP; Smith SN; Goodell PB; Roberts PA Phytopathology; 1997 Mar; 87(3):341-6. PubMed ID: 18945178 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. Zehra A; Meena M; Dubey MK; Aamir M; Upadhyay RS Bot Stud; 2017 Nov; 58(1):44. PubMed ID: 29098503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]