BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 32024292)

  • 1. Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins.
    Kim K; Choe D; Lee DH; Cho BK
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms.
    Calero P; Nikel PI
    Microb Biotechnol; 2019 Jan; 12(1):98-124. PubMed ID: 29926529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrosynthetic design of heterologous pathways.
    Carbonell P; Planson AG; Faulon JL
    Methods Mol Biol; 2013; 985():149-73. PubMed ID: 23417804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streamlining genomes: toward the generation of simplified and stabilized microbial systems.
    Leprince A; van Passel MW; dos Santos VA
    Curr Opin Biotechnol; 2012 Oct; 23(5):651-8. PubMed ID: 22651991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prototyping of microbial chassis for the biomanufacturing of high-value chemical targets.
    Robinson CJ; Tellechea-Luzardo J; Carbonell P; Jervis AJ; Yan C; Hollywood KA; Dunstan MS; Currin A; Takano E; Scrutton NS
    Biochem Soc Trans; 2021 Jun; 49(3):1055-1063. PubMed ID: 34100907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial cell factories based on filamentous bacteria, yeasts, and fungi.
    Ding Q; Ye C
    Microb Cell Fact; 2023 Jan; 22(1):20. PubMed ID: 36717860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The new strategies to overcome challenges in protein production in bacteria.
    Lipońska A; Ousalem F; Aalberts DP; Hunt JF; Boël G
    Microb Biotechnol; 2019 Jan; 12(1):44-47. PubMed ID: 30484965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole synthetic pathway engineering of recombinant protein production.
    Brown AJ; Gibson SJ; Hatton D; Arnall CL; James DC
    Biotechnol Bioeng; 2019 Feb; 116(2):375-387. PubMed ID: 30345502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chassis engineering for microbial production of chemicals: from natural microbes to synthetic organisms.
    Liu J; Wu X; Yao M; Xiao W; Zha J
    Curr Opin Biotechnol; 2020 Dec; 66():105-112. PubMed ID: 32738762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.
    Roointan A; Morowvat MH
    Biotechnol Genet Eng Rev; 2016; 32(1-2):74-91. PubMed ID: 28052722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals.
    Van Dien S
    Curr Opin Biotechnol; 2013 Dec; 24(6):1061-8. PubMed ID: 23537815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering.
    Choi KR; Jang WD; Yang D; Cho JS; Park D; Lee SY
    Trends Biotechnol; 2019 Aug; 37(8):817-837. PubMed ID: 30737009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression.
    Schindel HS; Piatek AA; Stewart CN; Lenaghan SC
    Plant Cell Rep; 2018 Oct; 37(10):1419-1429. PubMed ID: 30039465
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Hwang S; Lee Y; Kim JH; Kim G; Kim H; Kim W; Cho S; Palsson BO; Cho BK
    Front Bioeng Biotechnol; 2021; 9():804295. PubMed ID: 34993191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A.
    Unzueta U; Vázquez F; Accardi G; Mendoza R; Toledo-Rubio V; Giuliani M; Sannino F; Parrilli E; Abasolo I; Schwartz S; Tutino ML; Villaverde A; Corchero JL; Ferrer-Miralles N
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5863-74. PubMed ID: 25616525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmid-encoded protein: the principal factor in the "metabolic burden" associated with recombinant bacteria. Biotechnology Bioengineering, 1990.
    Bentley WE; Mirjalili N; Andersen DC; Davis RH; Kompala DS
    Biotechnol Bioeng; 2009 Apr; 102(5):1284-97; discussion 1283. PubMed ID: 19215036
    [No Abstract]   [Full Text] [Related]  

  • 18. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production.
    Wang G; Huang M; Nielsen J
    Curr Opin Biotechnol; 2017 Dec; 48():77-84. PubMed ID: 28410475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering and Synthetic Biology.
    Ramzi AB
    Adv Exp Med Biol; 2018; 1102():81-95. PubMed ID: 30382570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial genome reduction for optimal chassis of synthetic biology: a review.
    Ma S; Su T; Lu X; Qi Q
    Crit Rev Biotechnol; 2024 Jun; 44(4):660-673. PubMed ID: 37380345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.