BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 32024292)

  • 21. Synthetic Biology Toolkits for Metabolic Engineering of Cyanobacteria.
    Xia PF; Ling H; Foo JL; Chang MW
    Biotechnol J; 2019 Jun; 14(6):e1800496. PubMed ID: 30927496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications.
    Liang P; Zhang Y; Xu B; Zhao Y; Liu X; Gao W; Ma T; Yang C; Wang S; Liu R
    Microb Cell Fact; 2020 Mar; 19(1):70. PubMed ID: 32188438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000.
    Zhu D; Fu Y; Liu F; Xu H; Saris PE; Qiao M
    Microb Cell Fact; 2017 Jan; 16(1):1. PubMed ID: 28049473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches.
    Bu QT; Yu P; Wang J; Li ZY; Chen XA; Mao XM; Li YQ
    Microb Cell Fact; 2019 Jan; 18(1):16. PubMed ID: 30691531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Advances of consolidated bioprocessing based on recombinant strategy].
    Zheng Z; Zhao M; Chen T; Zhao X
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1354-62. PubMed ID: 24432651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.
    Gu P; Su T; Qi Q
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2097-105. PubMed ID: 26754821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of metabolic stress on genome stability of a synthetic biology chassis Escherichia coli K12 strain.
    Couto JM; McGarrity A; Russell J; Sloan WT
    Microb Cell Fact; 2018 Jan; 17(1):8. PubMed ID: 29357936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.
    Gawin A; Valla S; Brautaset T
    Microb Biotechnol; 2017 Jul; 10(4):702-718. PubMed ID: 28276630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular model-based design for heterologous bioproduction in bacteria.
    Landrain TE; Carrera J; Kirov B; Rodrigo G; Jaramillo A
    Curr Opin Biotechnol; 2009 Jun; 20(3):272-9. PubMed ID: 19559595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. General introduction: recombinant protein production and purification of insoluble proteins.
    Ferrer-Miralles N; Saccardo P; Corchero JL; Xu Z; García-Fruitós E
    Methods Mol Biol; 2015; 1258():1-24. PubMed ID: 25447856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterologous production of resveratrol in bacterial hosts: current status and perspectives.
    Braga A; Ferreira P; Oliveira J; Rocha I; Faria N
    World J Microbiol Biotechnol; 2018 Jul; 34(8):122. PubMed ID: 30054757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of a minimal genome as a chassis for synthetic biology.
    Sung BH; Choe D; Kim SC; Cho BK
    Essays Biochem; 2016 Nov; 60(4):337-346. PubMed ID: 27903821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast metabolic chassis designs for diverse biotechnological products.
    Jouhten P; Boruta T; Andrejev S; Pereira F; Rocha I; Patil KR
    Sci Rep; 2016 Jul; 6():29694. PubMed ID: 27430744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coping with complexity in metabolic engineering.
    Mampel J; Buescher JM; Meurer G; Eck J
    Trends Biotechnol; 2013 Jan; 31(1):52-60. PubMed ID: 23183303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of microbial cell factories for bio-refinery through synthetic bioengineering.
    Kondo A; Ishii J; Hara KY; Hasunuma T; Matsuda F
    J Biotechnol; 2013 Jan; 163(2):204-16. PubMed ID: 22728424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arabidopsis: the original plant chassis organism.
    Holland CK; Jez JM
    Plant Cell Rep; 2018 Oct; 37(10):1359-1366. PubMed ID: 29663032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combinatorial biosynthesis of small molecules in plants: Engineering strategies and tools.
    Gerasymenko I; Sheludko Y; Fräbel S; Staniek A; Warzecha H
    Methods Enzymol; 2019; 617():413-442. PubMed ID: 30784411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Techniques for chromosomal integration and expression optimization in Escherichia coli.
    Ou B; Garcia C; Wang Y; Zhang W; Zhu G
    Biotechnol Bioeng; 2018 Oct; 115(10):2467-2478. PubMed ID: 29981268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of bio-based fine chemical production through synthetic bioengineering.
    Hara KY; Araki M; Okai N; Wakai S; Hasunuma T; Kondo A
    Microb Cell Fact; 2014 Dec; 13():173. PubMed ID: 25494636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.