BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

845 related articles for article (PubMed ID: 32024560)

  • 21. New aspects and strategies for methane mitigation from ruminants.
    Kumar S; Choudhury PK; Carro MD; Griffith GW; Dagar SS; Puniya M; Calabro S; Ravella SR; Dhewa T; Upadhyay RC; Sirohi SK; Kundu SS; Wanapat M; Puniya AK
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):31-44. PubMed ID: 24247990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic Effects of 3-Nitrooxypropanol with Fumarate in the Regulation of Propionate Formation and Methanogenesis in Dairy Cows
    Liu Z; Wang K; Nan X; Cai M; Yang L; Xiong B; Zhao Y
    Appl Environ Microbiol; 2022 Mar; 88(6):e0190821. PubMed ID: 35080908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring Methane Production from Ruminants.
    Hill J; McSweeney C; Wright AG; Bishop-Hurley G; Kalantar-Zadeh K
    Trends Biotechnol; 2016 Jan; 34(1):26-35. PubMed ID: 26603286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective.
    Llonch P; Haskell MJ; Dewhurst RJ; Turner SP
    Animal; 2017 Feb; 11(2):274-284. PubMed ID: 27406001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of concentrate level on enteric methane emissions, production performance, and rumen fermentation of Jersey cows grazing kikuyu-dominant pasture during summer.
    van Wyngaard JDV; Meeske R; Erasmus LJ
    J Dairy Sci; 2018 Nov; 101(11):9954-9966. PubMed ID: 30197131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems.
    Smith PE; Kelly AK; Kenny DA; Waters SM
    Front Vet Sci; 2022; 9():958340. PubMed ID: 36619952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050.
    Arndt C; Hristov AN; Price WJ; McClelland SC; Pelaez AM; Cueva SF; Oh J; Dijkstra J; Bannink A; Bayat AR; Crompton LA; Eugène MA; Enahoro D; Kebreab E; Kreuzer M; McGee M; Martin C; Newbold CJ; Reynolds CK; Schwarm A; Shingfield KJ; Veneman JB; Yáñez-Ruiz DR; Yu Z
    Proc Natl Acad Sci U S A; 2022 May; 119(20):e2111294119. PubMed ID: 35537050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals.
    Tseten T; Sanjorjo RA; Kwon M; Kim SW
    J Microbiol Biotechnol; 2022 Mar; 32(3):269-277. PubMed ID: 35283433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors affecting methane production and mitigation in ruminants.
    Shibata M; Terada F
    Anim Sci J; 2010 Feb; 81(1):2-10. PubMed ID: 20163666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host.
    Newbold CJ; Ramos-Morales E
    Animal; 2020 Mar; 14(S1):s78-s86. PubMed ID: 32024572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction.
    Hassan FU; Arshad MA; Ebeid HM; Rehman MS; Khan MS; Shahid S; Yang C
    Front Vet Sci; 2020; 7():575801. PubMed ID: 33263013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems.
    Almeida AK; Hegarty RS; Cowie A
    Anim Nutr; 2021 Dec; 7(4):1219-1230. PubMed ID: 34754963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies to reduce methane emissions from farmed ruminants grazing on pasture.
    Buddle BM; Denis M; Attwood GT; Altermann E; Janssen PH; Ronimus RS; Pinares-Patiño CS; Muetzel S; Neil Wedlock D
    Vet J; 2011 Apr; 188(1):11-7. PubMed ID: 20347354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective breeding as a mitigation tool for methane emissions from dairy cattle.
    de Haas Y; Veerkamp RF; de Jong G; Aldridge MN
    Animal; 2021 Dec; 15 Suppl 1():100294. PubMed ID: 34246599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review: Plant Carbohydrate Types-The Potential Impact on Ruminant Methane Emissions.
    Sun X; Cheng L; Jonker A; Munidasa S; Pacheco D
    Front Vet Sci; 2022; 9():880115. PubMed ID: 35782553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
    Jeyanathan J; Martin C; Morgavi DP
    Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bovicins: The Bacteriocins of Streptococci and Their Potential in Methane Mitigation.
    Garsa AK; Choudhury PK; Puniya AK; Dhewa T; Malik RK; Tomar SK
    Probiotics Antimicrob Proteins; 2019 Dec; 11(4):1403-1413. PubMed ID: 30603877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review: Optimizing ruminant conversion of feed protein to human food protein.
    Broderick GA
    Animal; 2018 Aug; 12(8):1722-1734. PubMed ID: 29151400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review: Biological consequences of the inhibition of rumen methanogenesis.
    Ungerfeld EM; Pitta D
    Animal; 2024 Apr; ():101170. PubMed ID: 38772773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition.
    Sari NF; Ray P; Rymer C; Kliem KE; Stergiadis S
    Animals (Basel); 2022 Oct; 12(21):. PubMed ID: 36359121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.