BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32024661)

  • 1. The full-length transcriptome of
    Roach NP; Sadowski N; Alessi AF; Timp W; Taylor J; Kim JK
    Genome Res; 2020 Feb; 30(2):299-312. PubMed ID: 32024661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct full-length RNA sequencing reveals unexpected transcriptome complexity during
    Li R; Ren X; Ding Q; Bi Y; Xie D; Zhao Z
    Genome Res; 2020 Feb; 30(2):287-298. PubMed ID: 32024662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge-based reconstruction of mRNA transcripts with short sequencing reads for transcriptome research.
    Seok J; Xu W; Jiang H; Davis RW; Xiao W
    PLoS One; 2012; 7(2):e31440. PubMed ID: 22312447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice.
    Zhang G; Sun M; Wang J; Lei M; Li C; Zhao D; Huang J; Li W; Li S; Li J; Yang J; Luo Y; Hu S; Zhang B
    Plant J; 2019 Jan; 97(2):296-305. PubMed ID: 30288819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing.
    Leung SK; Jeffries AR; Castanho I; Jordan BT; Moore K; Davies JP; Dempster EL; Bray NJ; O'Neill P; Tseng E; Ahmed Z; Collier DA; Jeffery ED; Prabhakar S; Schalkwyk L; Jops C; Gandal MJ; Sheynkman GM; Hannon E; Mill J
    Cell Rep; 2021 Nov; 37(7):110022. PubMed ID: 34788620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans.
    Hillier LW; Reinke V; Green P; Hirst M; Marra MA; Waterston RH
    Genome Res; 2009 Apr; 19(4):657-66. PubMed ID: 19181841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA.
    Niazi AM; Krause M; Valen E
    Methods Mol Biol; 2021; 2284():543-567. PubMed ID: 33835463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs.
    Hassan MA; Melo MB; Haas B; Jensen KD; Saeij JP
    BMC Genomics; 2012 Dec; 13():696. PubMed ID: 23231500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PacBio single-molecule long-read sequencing shed new light on the transcripts and splice isoforms of the perennial ryegrass.
    Xie L; Teng K; Tan P; Chao Y; Li Y; Guo W; Han L
    Mol Genet Genomics; 2020 Mar; 295(2):475-489. PubMed ID: 31894400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing.
    Chao Y; Yuan J; Guo T; Xu L; Mu Z; Han L
    Plant Mol Biol; 2019 Feb; 99(3):219-235. PubMed ID: 30600412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A
    Ramberg S; Høyheim B; Østbye TK; Andreassen R
    Front Genet; 2021; 12():656334. PubMed ID: 33986770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans.
    Maxwell CS; Antoshechkin I; Kurhanewicz N; Belsky JA; Baugh LR
    Genome Res; 2012 Oct; 22(10):1920-9. PubMed ID: 22539650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MeDAS: a Metazoan Developmental Alternative Splicing database.
    Li Z; Zhang Y; Bush SJ; Tang C; Chen L; Zhang D; Urrutia AO; Lin JW; Chen L
    Nucleic Acids Res; 2021 Jan; 49(D1):D144-D150. PubMed ID: 33084905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring differential exon usage via short- and long-read RNA sequencing strategies.
    Leshkowitz D; Kedmi M; Fried Y; Pilzer D; Keren-Shaul H; Ainbinder E; Dassa B
    Open Biol; 2022 Sep; 12(9):220206. PubMed ID: 36168804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iFLAS: positive-unlabeled learning facilitates full-length transcriptome-based identification and functional exploration of alternatively spliced isoforms in maize.
    Xu F; Liu S; Zhao A; Shang M; Wang Q; Jiang S; Cheng Q; Chen X; Zhai X; Zhang J; Wang X; Yan J
    New Phytol; 2024 Mar; 241(6):2606-2620. PubMed ID: 38291701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing.
    Chao Y; Yuan J; Li S; Jia S; Han L; Xu L
    BMC Plant Biol; 2018 Nov; 18(1):300. PubMed ID: 30477428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection.
    Nguyen Quang N; Goudey S; Ségéral E; Mohammad A; Lemoine S; Blugeon C; Versapuech M; Paillart JC; Berlioz-Torrent C; Emiliani S; Gallois-Montbrun S
    Retrovirology; 2020 Aug; 17(1):25. PubMed ID: 32807178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Read Transcriptome of Equine Bronchoalveolar Cells.
    Sage SE; Nicholson P; Leeb T; Gerber V; Jagannathan V
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling the polyadenylated transcriptome of extracellular vesicles with long-read nanopore sequencing.
    Padilla JA; Barutcu S; Malet L; Deschamps-Francoeur G; Calderon V; Kwon E; Lécuyer E
    BMC Genomics; 2023 Sep; 24(1):564. PubMed ID: 37736705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.