BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32024701)

  • 1. Critical Role for SLAM/SAP Signaling in the Thymic Developmental Programming of IL-17- and IFN-γ-Producing γδ T Cells.
    Dienz O; DeVault VL; Musial SC; Mistri SK; Mei L; Baraev A; Dragon JA; Krementsov D; Veillette A; Boyson JE
    J Immunol; 2020 Mar; 204(6):1521-1534. PubMed ID: 32024701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets.
    Muñoz-Ruiz M; Ribot JC; Grosso AR; Gonçalves-Sousa N; Pamplona A; Pennington DJ; Regueiro JR; Fernández-Malavé E; Silva-Santos B
    Nat Immunol; 2016 Jun; 17(6):721-727. PubMed ID: 27043412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers.
    Shibata K; Yamada H; Nakamura R; Sun X; Itsumi M; Yoshikai Y
    J Immunol; 2008 Nov; 181(9):5940-7. PubMed ID: 18941182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.
    Haas JD; González FH; Schmitz S; Chennupati V; Föhse L; Kremmer E; Förster R; Prinz I
    Eur J Immunol; 2009 Dec; 39(12):3488-97. PubMed ID: 19830744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling lymphocytic activation molecule (SLAM)/SLAM-associated protein pathway regulates human B-cell tolerance.
    Menard L; Cantaert T; Chamberlain N; Tangye SG; Riminton S; Church JA; Klion A; Cunningham-Rundles C; Nichols KE; Meffre E
    J Allergy Clin Immunol; 2014 Apr; 133(4):1149-61. PubMed ID: 24373350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLAM-associated protein favors the development of iNKT2 over iNKT17 cells.
    Michel ML; Lenoir C; Massot B; Diem S; Pasquier B; Sawa S; Rignault-Bricard R; Lehuen A; Eberl G; Veillette A; Leite-de-Moraes M; Latour S
    Eur J Immunol; 2016 Sep; 46(9):2162-74. PubMed ID: 27338553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development.
    Huang B; Gomez-Rodriguez J; Preite S; Garrett LJ; Harper UL; Schwartzberg PL
    PLoS One; 2016; 11(6):e0156072. PubMed ID: 27258160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments.
    Lopes N; McIntyre C; Martin S; Raverdeau M; Sumaria N; Kohlgruber AC; Fiala GJ; Agudelo LZ; Dyck L; Kane H; Douglas A; Cunningham S; Prendeville H; Loftus R; Carmody C; Pierre P; Kellis M; Brenner M; Argüello RJ; Silva-Santos B; Pennington DJ; Lynch L
    Nat Immunol; 2021 Feb; 22(2):179-192. PubMed ID: 33462452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. γδ T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a Listeria model of infection independently of CD28 costimulation.
    Laird RM; Wolf BJ; Princiotta MF; Hayes SM
    PLoS One; 2013; 8(5):e63178. PubMed ID: 23671671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).
    Yusuf I; Kageyama R; Monticelli L; Johnston RJ; Ditoro D; Hansen K; Barnett B; Crotty S
    J Immunol; 2010 Jul; 185(1):190-202. PubMed ID: 20525889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naturally activated V gamma 4 gamma delta T cells play a protective role in tumor immunity through expression of eomesodermin.
    He W; Hao J; Dong S; Gao Y; Tao J; Chi H; Flavell R; O'Brien RL; Born WK; Craft J; Han J; Wang P; Zhao L; Wu J; Yin Z
    J Immunol; 2010 Jul; 185(1):126-33. PubMed ID: 20525896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell analysis reveals the origins and intrahepatic development of liver-resident IFN-γ-producing γδ T cells.
    Hu Y; Fang K; Wang Y; Lu N; Sun H; Zhang C
    Cell Mol Immunol; 2021 Apr; 18(4):954-968. PubMed ID: 33692482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLZF Controls the Development of Fetal-Derived IL-17+Vγ6+ γδ T Cells.
    Lu Y; Cao X; Zhang X; Kovalovsky D
    J Immunol; 2015 Nov; 195(9):4273-81. PubMed ID: 26408661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD30 is required for activation of a unique subset of interleukin-17A-producing γδ T cells in innate immunity against Mycobacterium bovis Bacillus Calmette-Guerin infection.
    Guo Y; Sun X; Shibata K; Yamada H; Muta H; Podack ER; Yoshikai Y
    Infect Immun; 2013 Oct; 81(10):3923-34. PubMed ID: 23918785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three distinct developmental pathways for adaptive and two IFN-γ-producing γδ T subsets in adult thymus.
    Buus TB; Ødum N; Geisler C; Lauritsen JPH
    Nat Commun; 2017 Dec; 8(1):1911. PubMed ID: 29203769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thymic Determinants of γδ T Cell Differentiation.
    Muñoz-Ruiz M; Sumaria N; Pennington DJ; Silva-Santos B
    Trends Immunol; 2017 May; 38(5):336-344. PubMed ID: 28285814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SLAM/SAP signaling regulates discrete γδ T cell developmental checkpoints and shapes the innate-like γδ TCR repertoire.
    Mistri SK; Hilton BM; Horrigan KJ; Andretta ES; Savard R; Dienz O; Hampel KJ; Gerrard DL; Rose JT; Sidiropoulos N; Majumdar D; Boyson JE
    bioRxiv; 2024 Feb; ():. PubMed ID: 38260519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes.
    Narayan K; Sylvia KE; Malhotra N; Yin CC; Martens G; Vallerskog T; Kornfeld H; Xiong N; Cohen NR; Brenner MB; Berg LJ; Kang J;
    Nat Immunol; 2012 Apr; 13(5):511-8. PubMed ID: 22473038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells.
    Turchinovich G; Hayday AC
    Immunity; 2011 Jul; 35(1):59-68. PubMed ID: 21737317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The major diversification of Vγ1.1
    Buus TB; Geisler C; Lauritsen JP
    Eur J Immunol; 2016 Oct; 46(10):2363-2375. PubMed ID: 27418188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.