BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 32024780)

  • 1. Modifying the Adult Rat Tonotopic Map with Sound Exposure Produces Frequency Discrimination Deficits That Are Recovered with Training.
    Thomas ME; Lane CP; Chaudron YMJ; Cisneros-Franco JM; de Villers-Sidani É
    J Neurosci; 2020 Mar; 40(11):2259-2268. PubMed ID: 32024780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of Hyperacusis in Adult Rats Following Non-traumatic Sound Exposure.
    Thomas ME; Guercio GD; Drudik KM; de Villers-Sidani É
    Front Syst Neurosci; 2019; 13():55. PubMed ID: 31708754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual learning directs auditory cortical map reorganization through top-down influences.
    Polley DB; Steinberg EE; Merzenich MM
    J Neurosci; 2006 May; 26(18):4970-82. PubMed ID: 16672673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical map plasticity improves learning but is not necessary for improved performance.
    Reed A; Riley J; Carraway R; Carrasco A; Perez C; Jakkamsetti V; Kilgard MP
    Neuron; 2011 Apr; 70(1):121-31. PubMed ID: 21482361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal plasticity in the primary auditory cortex induced by operant perceptual learning.
    Bao S; Chang EF; Woods J; Merzenich MM
    Nat Neurosci; 2004 Sep; 7(9):974-81. PubMed ID: 15286790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory perceptual learning and changes in the conceptualization of auditory cortex.
    Irvine DRF
    Hear Res; 2018 Sep; 366():3-16. PubMed ID: 29551308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early experience impairs perceptual discrimination.
    Han YK; Köver H; Insanally MN; Semerdjian JH; Bao S
    Nat Neurosci; 2007 Sep; 10(9):1191-7. PubMed ID: 17660815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory.
    Elias GA; Bieszczad KM; Weinberger NM
    Neurobiol Learn Mem; 2015 Dec; 126():39-55. PubMed ID: 26596700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced contrast sensitivity in auditory cortex as cats learn to discriminate sound frequencies.
    Witte RS; Kipke DR
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):171-84. PubMed ID: 15820626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior.
    Talwar SK; Gerstein GL
    J Neurophysiol; 2001 Oct; 86(4):1555-72. PubMed ID: 11600620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.
    Funamizu A; Kanzaki R; Takahashi H
    PLoS One; 2013; 8(5):e63655. PubMed ID: 23671691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Prolonged Masking of Temporal Acoustic Inputs with Noise Drives Plasticity in the Adult Rat Auditory Cortex.
    Thomas ME; Friedman NHM; Cisneros-Franco JM; Ouellet L; de Villers-Sidani É
    Cereb Cortex; 2019 Mar; 29(3):1032-1046. PubMed ID: 29420680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.
    Moucha R; Pandya PK; Engineer ND; Rathbun DL; Kilgard MP
    Exp Brain Res; 2005 May; 162(4):417-27. PubMed ID: 15616812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory discrimination training rescues developmentally degraded directional selectivity and restores mature expression of GABA(A) and AMPA receptor subunits in rat auditory cortex.
    Guo F; Zhang J; Zhu X; Cai R; Zhou X; Sun X
    Behav Brain Res; 2012 Apr; 229(2):301-7. PubMed ID: 22306199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salicylate-induced frequency-map reorganization in four subfields of the mouse auditory cortex.
    Yanagawa Y; Takasu K; Osanai H; Tateno T
    Hear Res; 2017 Aug; 351():98-115. PubMed ID: 28637591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive exposure of adult cats to moderate-level tone pip ensembles differentially decreases AI and AII responsiveness in the exposure frequency range.
    Pienkowski M; Eggermont JJ
    Hear Res; 2010 Sep; 268(1-2):151-62. PubMed ID: 20630476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical depression in the mouse auditory cortex after sound discrimination learning.
    Ohshima S; Tsukano H; Kubota Y; Takahashi K; Hishida R; Takahashi S; Shibuki K
    Neurosci Res; 2010 May; 67(1):51-8. PubMed ID: 20096737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus.
    Koops EA; Renken RJ; Lanting CP; van Dijk P
    J Neurosci; 2020 Apr; 40(16):3178-3185. PubMed ID: 32193229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tonotopic representation of missing fundamental complex sounds in the human auditory cortex.
    Fujioka T; Ross B; Okamoto H; Takeshima Y; Kakigi R; Pantev C
    Eur J Neurosci; 2003 Jul; 18(2):432-40. PubMed ID: 12887425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning-stage-dependent, field-specific, map plasticity in the rat auditory cortex during appetitive operant conditioning.
    Takahashi H; Yokota R; Funamizu A; Kose H; Kanzaki R
    Neuroscience; 2011 Dec; 199():243-58. PubMed ID: 21985937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.