BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32024835)

  • 21. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts.
    Goler JA; Carothers JM; Keasling JD
    Methods Mol Biol; 2014; 1111():221-35. PubMed ID: 24549623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applicability of a computational design approach for synthetic riboswitches.
    Domin G; Findeiß S; Wachsmuth M; Will S; Stadler PF; Mörl M
    Nucleic Acids Res; 2017 Apr; 45(7):4108-4119. PubMed ID: 27994029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanding the toolbox of synthetic riboswitches with guanine-dependent aptazymes.
    Stifel J; Spöring M; Hartig JS
    Synth Biol (Oxf); 2019; 4(1):ysy022. PubMed ID: 32995528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic small RNAs: Current status, challenges, and opportunities.
    Patel S; Panchasara H; Braddick D; Gohil N; Singh V
    J Cell Biochem; 2018 Dec; 119(12):9619-9639. PubMed ID: 30010218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Ogawa A; Itoh Y
    ACS Synth Biol; 2020 Oct; 9(10):2648-2655. PubMed ID: 33017145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversible Gene Regulation in Mammalian Cells Using Riboswitch-Engineered Vesicular Stomatitis Virus Vector.
    Takahashi K; Yokobayashi Y
    ACS Synth Biol; 2019 Sep; 8(9):1976-1982. PubMed ID: 31415142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of MAP4K4 gene expression by RNA interference through an engineered theophylline-dependent hepatitis delta virus ribozyme switch.
    Cheng H; Zhang Y; Wang H; Sun N; Liu M; Chen H; Pei R
    Mol Biosyst; 2016 Oct; 12(11):3370-3376. PubMed ID: 27754501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aptazyme-Based Riboswitches and Logic Gates in Mammalian Cells.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2021; 2323():213-220. PubMed ID: 34086283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Theophylline-Responsive Riboswitch Regulates Expression of Nuclear-Encoded Genes.
    Shanidze N; Lenkeit F; Hartig JS; Funck D
    Plant Physiol; 2020 Jan; 182(1):123-135. PubMed ID: 31704721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Base ionization and ligand binding: how small ribozymes and riboswitches gain a foothold in a protein world.
    Liberman JA; Wedekind JE
    Curr Opin Struct Biol; 2011 Jun; 21(3):327-34. PubMed ID: 21530235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study.
    Yamagami R; Kayedkhordeh M; Mathews DH; Bevilacqua PC
    Nucleic Acids Res; 2019 Jan; 47(1):29-42. PubMed ID: 30462314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aptamer-Mediated Control of Polyadenylation for Gene Expression Regulation in Mammalian Cells.
    Spöring M; Boneberg R; Hartig JS
    ACS Synth Biol; 2020 Nov; 9(11):3008-3018. PubMed ID: 33108164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Riboselector: riboswitch-based synthetic selection device to expedite evolution of metabolite-producing microorganisms.
    Jang S; Yang J; Seo SW; Jung GY
    Methods Enzymol; 2015; 550():341-62. PubMed ID: 25605394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput cellular RNA device engineering.
    Townshend B; Kennedy AB; Xiang JS; Smolke CD
    Nat Methods; 2015 Oct; 12(10):989-94. PubMed ID: 26258292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.