These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32024835)

  • 41. Applications of high-throughput sequencing to analyze and engineer ribozymes.
    Yokobayashi Y
    Methods; 2019 May; 161():41-45. PubMed ID: 30738128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Engineering and screening of artificial riboswitch as a novel gene control element].
    Yang H; Diao Y; Lin J; Xu R
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):134-43. PubMed ID: 22667116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automated Design of Diverse Stand-Alone Riboswitches.
    Wu MJ; Andreasson JOL; Kladwang W; Greenleaf W; Das R
    ACS Synth Biol; 2019 Aug; 8(8):1838-1846. PubMed ID: 31298841
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescence monitoring of riboswitch transcription regulation using a dual molecular beacon assay.
    Chinnappan R; Dubé A; Lemay JF; Lafontaine DA
    Nucleic Acids Res; 2013 May; 41(10):e106. PubMed ID: 23525464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A small, portable RNA device for the control of exon skipping in mammalian cells.
    Vogel M; Weigand JE; Kluge B; Grez M; Suess B
    Nucleic Acids Res; 2018 May; 46(8):e48. PubMed ID: 29420816
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The 3'-untranslated region of mRNAs as a site for ribozyme cleavage-dependent processing and control in bacteria.
    Felletti M; Bieber A; Hartig JS
    RNA Biol; 2017 Nov; 14(11):1522-1533. PubMed ID: 27690736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural Changes in Aptamers are Essential for Synthetic Riboswitch Engineering.
    Hoetzel J; Suess B
    J Mol Biol; 2022 Sep; 434(18):167631. PubMed ID: 35595164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of Synthetic Riboswitches to Guide the Evolution of Metabolite Production in Microorganisms.
    Kim M; Jang S; Jung GY
    Methods Mol Biol; 2022; 2518():135-155. PubMed ID: 35666444
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intracellular light-activation of riboswitch activity.
    Walsh S; Gardner L; Deiters A; Williams GJ
    Chembiochem; 2014 Jun; 15(9):1346-51. PubMed ID: 24861567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells.
    Zhong G; Wang H; Bailey CC; Gao G; Farzan M
    Elife; 2016 Nov; 5():. PubMed ID: 27805569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing.
    Yokobayashi Y
    Acc Chem Res; 2020 Dec; 53(12):2903-2912. PubMed ID: 33164502
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Riboswitches: From living biosensors to novel targets of antibiotics.
    Mehdizadeh Aghdam E; Hejazi MS; Barzegar A
    Gene; 2016 Nov; 592(2):244-59. PubMed ID: 27432066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
    Ceres P; Garst AD; Marcano-Velázquez JG; Batey RT
    ACS Synth Biol; 2013 Aug; 2(8):463-72. PubMed ID: 23654267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research.
    Wrist A; Sun W; Summers RM
    ACS Synth Biol; 2020 Apr; 9(4):682-697. PubMed ID: 32142605
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient splicing-based RNA regulators for tetracycline-inducible gene expression in human cell culture and C. elegans.
    Finke M; Brecht D; Stifel J; Gense K; Gamerdinger M; Hartig JS
    Nucleic Acids Res; 2021 Jul; 49(12):e71. PubMed ID: 33893804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring the modular nature of riboswitches and RNA thermometers.
    Roßmanith J; Narberhaus F
    Nucleic Acids Res; 2016 Jun; 44(11):5410-23. PubMed ID: 27060146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Screening and selection of artificial riboswitches.
    Harbaugh SV; Martin JA; Weinstein J; Ingram G; Kelley-Loughnane N
    Methods; 2018 Jul; 143():77-89. PubMed ID: 29778645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthetic Biology of Small RNAs and Riboswitches.
    Villa JK; Su Y; Contreras LM; Hammond MC
    Microbiol Spectr; 2018 May; 6(3):. PubMed ID: 29932045
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile Expansion of the Variety of Orthogonal Ligand/Aptamer Pairs for Artificial Riboswitches.
    Ogawa A; Inoue H; Itoh Y; Takahashi H
    ACS Synth Biol; 2023 Jan; 12(1):35-42. PubMed ID: 36566430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.