These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32024840)
1. Controlling solid-liquid interfacial energy anisotropy through the isotropic liquid. Wang L; Hoyt JJ; Wang N; Provatas N; Sinclair CW Nat Commun; 2020 Feb; 11(1):724. PubMed ID: 32024840 [TBL] [Abstract][Full Text] [Related]
2. Correlation between crystallographic anisotropy and dendritic orientation selection of binary magnesium alloys. Du J; Guo Z; Zhang A; Yang M; Li M; Xiong S Sci Rep; 2017 Oct; 7(1):13600. PubMed ID: 29051513 [TBL] [Abstract][Full Text] [Related]
3. Effect of local composition-dependent interfacial anisotropy on dendritic growth orientation. Wang L; Yang L Eur Phys J E Soft Matter; 2020 Jul; 43(7):48. PubMed ID: 32683503 [TBL] [Abstract][Full Text] [Related]
4. Inverse method for the determination of a mathematical expression for the anisotropy of the solid-liquid interfacial energy in Al-Zn-Si alloys. Niederberger C; Michler J; Jacot A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021604. PubMed ID: 17025443 [TBL] [Abstract][Full Text] [Related]
5. Calculating the role of composition in the anisotropy of solid-liquid interface energy using phase-field-crystal theory. Jugdutt BA; Ofori-Opoku N; Provatas N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042405. PubMed ID: 26565255 [TBL] [Abstract][Full Text] [Related]
6. Density functional theory of gas-liquid phase separation in dilute binary mixtures. Okamoto R; Onuki A J Phys Condens Matter; 2016 Jun; 28(24):244012. PubMed ID: 27115676 [TBL] [Abstract][Full Text] [Related]
7. A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys. Kaptay G Adv Colloid Interface Sci; 2020 Sep; 283():102212. PubMed ID: 32781298 [TBL] [Abstract][Full Text] [Related]
8. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations. Benet J; MacDowell LG; Sanz E J Chem Phys; 2015 Apr; 142(13):134706. PubMed ID: 25854257 [TBL] [Abstract][Full Text] [Related]
9. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study. Xing H; Dong X; Wu H; Hao G; Wang J; Chen C; Jin K Sci Rep; 2016 May; 6():26625. PubMed ID: 27210816 [TBL] [Abstract][Full Text] [Related]
10. Atomistic Determination of Anisotropic Surface Energy-Associated Growth Patterns of Magnesium Alloy Dendrites. Du J; Zhang A; Guo Z; Yang M; Li M; Xiong S ACS Omega; 2017 Dec; 2(12):8803-8809. PubMed ID: 31457410 [TBL] [Abstract][Full Text] [Related]
11. Structure, dynamics, and the free energy of solute adsorption at liquid-vapor interfaces of simple dipolar systems: molecular dynamics results for pure and mixed Stockmayer fluids. Paul S; Chandra A J Phys Chem B; 2007 Nov; 111(43):12500-7. PubMed ID: 17927243 [TBL] [Abstract][Full Text] [Related]
12. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study. Wang J; Apte PA; Morris JR; Zeng XC J Chem Phys; 2013 Sep; 139(11):114705. PubMed ID: 24070303 [TBL] [Abstract][Full Text] [Related]
13. Computer simulation studies of finite-size broadening of solid-liquid interfaces: from hard spheres to nickel. Zykova-Timan T; Rozas RE; Horbach J; Binder K J Phys Condens Matter; 2009 Nov; 21(46):464102. PubMed ID: 21715866 [TBL] [Abstract][Full Text] [Related]
14. Growth competition during columnar solidification of seaweed microstructures : Insights from 3-D phase-field simulations. Ankit K; Glicksman ME Eur Phys J E Soft Matter; 2020 Feb; 43(2):14. PubMed ID: 32086596 [TBL] [Abstract][Full Text] [Related]
15. Phase-field study of the effects of the multi-controlling parameters on columnar dendrite during directional solidification in hexagonal materials. Wang Y; Wei M; Liu X; Chen C; Wu Y; Peng L; Chen LQ Eur Phys J E Soft Matter; 2020 Jul; 43(7):41. PubMed ID: 32617715 [TBL] [Abstract][Full Text] [Related]
16. Method for computing the anisotropy of the solid-liquid interfacial free energy. Hoyt JJ; Asta M; Karma A Phys Rev Lett; 2001 Jun; 86(24):5530-3. PubMed ID: 11415293 [TBL] [Abstract][Full Text] [Related]
17. Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems. Kundin J; Choudhary MA Phys Rev E; 2016 Jul; 94(1-1):012801. PubMed ID: 27575196 [TBL] [Abstract][Full Text] [Related]
18. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale. Tang S; Wang J; Li J; Wang Z; Guo Y; Guo C; Zhou Y Phys Rev E; 2017 Jun; 95(6-1):062803. PubMed ID: 28709310 [TBL] [Abstract][Full Text] [Related]
19. Bayesian inference of solid-liquid interfacial properties out of equilibrium. Ohno M; Oka Y; Sakane S; Shibuta Y; Takaki T Phys Rev E; 2020 May; 101(5-1):052121. PubMed ID: 32575197 [TBL] [Abstract][Full Text] [Related]
20. Interfacial free energy of a liquid-solid interface: Its change with curvature. Montero de Hijes P; Espinosa JR; Sanz E; Vega C J Chem Phys; 2019 Oct; 151(14):144501. PubMed ID: 31615240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]