BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 32024872)

  • 1. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explainable drug sensitivity prediction through cancer pathway enrichment.
    Tang YC; Gottlieb A
    Sci Rep; 2021 Feb; 11(1):3128. PubMed ID: 33542382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning of mutation-gene-drug relations from the literature.
    Lee K; Kim B; Choi Y; Kim S; Shin W; Lee S; Park S; Kim S; Tan AC; Kang J
    BMC Bioinformatics; 2018 Jan; 19(1):21. PubMed ID: 29368597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network.
    Jiang HJ; Huang YA; You ZH
    Sci Rep; 2020 Mar; 10(1):4972. PubMed ID: 32188871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning.
    Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y
    Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties.
    Menden MP; Iorio F; Garnett M; McDermott U; Benes CH; Ballester PJ; Saez-Rodriguez J
    PLoS One; 2013; 8(4):e61318. PubMed ID: 23646105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature.
    Chang Y; Park H; Yang HJ; Lee S; Lee KY; Kim TS; Jung J; Shin JM
    Sci Rep; 2018 Jun; 8(1):8857. PubMed ID: 29891981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional Neural Network Can Recognize Drug Resistance of Single Cancer Cells.
    Yanagisawa K; Toratani M; Asai A; Konno M; Niioka H; Mizushima T; Satoh T; Miyake J; Ogawa K; Vecchione A; Doki Y; Eguchi H; Ishii H
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32365822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug Selection in the Genomic Age: Application of the Coexpression Extrapolation Principle for Drug Repositioning in Cancer Therapy.
    Gustafson DL; Fowles JS; Brown KC; Theodorescu D
    Assay Drug Dev Technol; 2015 Dec; 13(10):623-7. PubMed ID: 26690765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.