These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32025044)

  • 21. Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit.
    Zhao YJ; Wang C; Zhu X; Liu YX
    Sci Rep; 2016 Apr; 6():23646. PubMed ID: 27033558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The flux qubit revisited to enhance coherence and reproducibility.
    Yan F; Gustavsson S; Kamal A; Birenbaum J; Sears AP; Hover D; Gudmundsen TJ; Rosenberg D; Samach G; Weber S; Yoder JL; Orlando TP; Clarke J; Kerman AJ; Oliver WD
    Nat Commun; 2016 Nov; 7():12964. PubMed ID: 27808092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation.
    Poletto S; Gambetta JM; Merkel ST; Smolin JA; Chow JM; Córcoles AD; Keefe GA; Rothwell MB; Rozen JR; Abraham DW; Rigetti C; Steffen M
    Phys Rev Lett; 2012 Dec; 109(24):240505. PubMed ID: 23368296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Breaking the trade-off between fast control and long lifetime of a superconducting qubit.
    Kono S; Koshino K; Lachance-Quirion D; van Loo AF; Tabuchi Y; Noguchi A; Nakamura Y
    Nat Commun; 2020 Jul; 11(1):3683. PubMed ID: 32703942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble.
    Kubo Y; Grezes C; Dewes A; Umeda T; Isoya J; Sumiya H; Morishita N; Abe H; Onoda S; Ohshima T; Jacques V; Dréau A; Roch JF; Diniz I; Auffeves A; Vion D; Esteve D; Bertet P
    Phys Rev Lett; 2011 Nov; 107(22):220501. PubMed ID: 22182018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coherent spin-photon coupling using a resonant exchange qubit.
    Landig AJ; Koski JV; Scarlino P; Mendes UC; Blais A; Reichl C; Wegscheider W; Wallraff A; Ensslin K; Ihn T
    Nature; 2018 Aug; 560(7717):179-184. PubMed ID: 30046114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential Dispersive Measurement of a Superconducting Qubit.
    Peronnin T; Marković D; Ficheux Q; Huard B
    Phys Rev Lett; 2020 May; 124(18):180502. PubMed ID: 32441960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the spontaneous emission of a superconducting transmon qubit.
    Houck AA; Schreier JA; Johnson BR; Chow JM; Koch J; Gambetta JM; Schuster DI; Frunzio L; Devoret MH; Girvin SM; Schoelkopf RJ
    Phys Rev Lett; 2008 Aug; 101(8):080502. PubMed ID: 18764596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Universal Stabilization of a Parametrically Coupled Qubit.
    Lu Y; Chakram S; Leung N; Earnest N; Naik RK; Huang Z; Groszkowski P; Kapit E; Koch J; Schuster DI
    Phys Rev Lett; 2017 Oct; 119(15):150502. PubMed ID: 29077454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit.
    Ristè D; Bultink CC; Tiggelman MJ; Schouten RN; Lehnert KW; DiCarlo L
    Nat Commun; 2013; 4():1913. PubMed ID: 23715272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit.
    Xu Y; Cai W; Ma Y; Mu X; Hu L; Chen T; Wang H; Song YP; Xue ZY; Yin ZQ; Sun L
    Phys Rev Lett; 2018 Sep; 121(11):110501. PubMed ID: 30265093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controllable Switching between Superradiant and Subradiant States in a 10-qubit Superconducting Circuit.
    Wang Z; Li H; Feng W; Song X; Song C; Liu W; Guo Q; Zhang X; Dong H; Zheng D; Wang H; Wang DW
    Phys Rev Lett; 2020 Jan; 124(1):013601. PubMed ID: 31976713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits.
    Schmitt TW; Connolly MR; Schleenvoigt M; Liu C; Kennedy O; Chávez-Garcia JM; Jalil AR; Bennemann B; Trellenkamp S; Lentz F; Neumann E; Lindström T; de Graaf SE; Berenschot E; Tas N; Mussler G; Petersson KD; Grützmacher D; Schüffelgen P
    Nano Lett; 2022 Apr; 22(7):2595-2602. PubMed ID: 35235321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Miniaturizing Transmon Qubits Using van der Waals Materials.
    Antony A; Gustafsson MV; Ribeill GJ; Ware M; Rajendran A; Govia LCG; Ohki TA; Taniguchi T; Watanabe K; Hone J; Fong KC
    Nano Lett; 2021 Dec; 21(23):10122-10126. PubMed ID: 34792368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Random access quantum information processors using multimode circuit quantum electrodynamics.
    Naik RK; Leung N; Chakram S; Groszkowski P; Lu Y; Earnest N; McKay DC; Koch J; Schuster DI
    Nat Commun; 2017 Dec; 8(1):1904. PubMed ID: 29199271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interacting Qubit-Photon Bound States with Superconducting Circuits.
    Sundaresan NM; Lundgren R; Zhu G; Gorshkov AV; Houck AA
    Phys Rev X; 2019; 9(1):. PubMed ID: 32117578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum state engineering with circuit electromechanical three-body interactions.
    Abdi M; Pernpeintner M; Gross R; Huebl H; Hartmann MJ
    Phys Rev Lett; 2015 May; 114(17):173602. PubMed ID: 25978232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits.
    Wang JI; Yamoah MA; Li Q; Karamlou AH; Dinh T; Kannan B; Braumüller J; Kim D; Melville AJ; Muschinske SE; Niedzielski BM; Serniak K; Sung Y; Winik R; Yoder JL; Schwartz ME; Watanabe K; Taniguchi T; Orlando TP; Gustavsson S; Jarillo-Herrero P; Oliver WD
    Nat Mater; 2022 Apr; 21(4):398-403. PubMed ID: 35087240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid and unconditional parametric reset protocol for tunable superconducting qubits.
    Zhou Y; Zhang Z; Yin Z; Huai S; Gu X; Xu X; Allcock J; Liu F; Xi G; Yu Q; Zhang H; Zhang M; Li H; Song X; Wang Z; Zheng D; An S; Zheng Y; Zhang S
    Nat Commun; 2021 Oct; 12(1):5924. PubMed ID: 34635663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deterministic generation of entangled photons in superconducting resonator arrays.
    Hu Y; Tian L
    Phys Rev Lett; 2011 Jun; 106(25):257002. PubMed ID: 21770664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.