These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32025056)

  • 1. Methods to estimate changes in soil water for phenotyping root activity in the field.
    Whalley WR; Binley A; Watts CW; Shanahan P; Dodd IC; Ober ES; Ashton RW; Webster CP; White RP; Hawkesford MJ
    Plant Soil; 2017; 415(1):407-422. PubMed ID: 32025056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root growth in field-grown winter wheat: Some effects of soil conditions, season and genotype.
    Hodgkinson L; Dodd IC; Binley A; Ashton RW; White RP; Watts CW; Whalley WR
    Eur J Agron; 2017 Nov; 91():74-83. PubMed ID: 29129966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying.
    Dodd IC; Egea G; Watts CW; Whalley WR
    J Exp Bot; 2010 Aug; 61(13):3543-51. PubMed ID: 20591896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.
    Valentine TA; Hallett PD; Binnie K; Young MW; Squire GR; Hawes C; Bengough AG
    Ann Bot; 2012 Jul; 110(2):259-70. PubMed ID: 22684682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between water uptake and root length density in winter wheat: effects of root density and rhizosphere properties.
    Zhang XX; Whalley PA; Ashton RW; Evans J; Hawkesford MJ; Griffiths S; Huang ZD; Zhou H; Mooney SJ; Whalley WR
    Plant Soil; 2020; 451(1):345-356. PubMed ID: 32848280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits.
    Bengough AG; McKenzie BM; Hallett PD; Valentine TA
    J Exp Bot; 2011 Jan; 62(1):59-68. PubMed ID: 21118824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of seminal wheat seedling roots to soil water deficits.
    Trejo C; Else MA; Atkinson CJ
    J Plant Physiol; 2018 Apr; 223():105-114. PubMed ID: 29567416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling Rooting Depth and Soil Strength in a Drying Soil Profile.
    Bengough AG
    J Theor Biol; 1997 Jun; 186(3):327-38. PubMed ID: 9344728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple abiotic stress, nitrate availability and the growth of wheat.
    Ge Y; Hawkesford MJ; Rosolem CA; Mooney SJ; Ashton RW; Evans J; Whalley WR
    Soil Tillage Res; 2019 Aug; 191():171-184. PubMed ID: 31379399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of microbial activity on penetrometer resistance and elastic modulus of soil at different temperatures.
    Gao W; Muñoz-Romero V; Ren T; Ashton RW; Morin M; Clark IM; Powlson DS; Whalley WR
    Eur J Soil Sci; 2017 Jul; 68(4):412-419. PubMed ID: 28804253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping.
    Nagel KA; Bonnett D; Furbank R; Walter A; Schurr U; Watt M
    J Exp Bot; 2015 Sep; 66(18):5441-52. PubMed ID: 26089535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root anatomical traits contribute to deeper rooting of maize under compacted field conditions.
    Vanhees DJ; Loades KW; Bengough AG; Mooney SJ; Lynch JP
    J Exp Bot; 2020 Jul; 71(14):4243-4257. PubMed ID: 32420593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites.
    Watt M; Moosavi S; Cunningham SC; Kirkegaard JA; Rebetzke GJ; Richards RA
    Ann Bot; 2013 Jul; 112(2):447-55. PubMed ID: 23821620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the matric potential of soil water in the rhizosphere.
    Whalley WR; Ober ES; Jenkins M
    J Exp Bot; 2013 Oct; 64(13):3951-63. PubMed ID: 23526772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil Water Content Prediction Using Electrical Resistivity Tomography (ERT) in Mediterranean Tree Orchard Soils.
    Acosta JA; Gabarrón M; Martínez-Segura M; Martínez-Martínez S; Faz Á; Pérez-Pastor A; Gómez-López MD; Zornoza R
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil textures rather than root hairs dominate water uptake and soil-plant hydraulics under drought.
    Cai G; Carminati A; Abdalla M; Ahmed MA
    Plant Physiol; 2021 Oct; 187(2):858-872. PubMed ID: 34608949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root hydraulic phenotypes impacting water uptake in drying soils.
    Cai G; Ahmed MA; Abdalla M; Carminati A
    Plant Cell Environ; 2022 Mar; 45(3):650-663. PubMed ID: 35037263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA-based method for studying root responses to drought in field-grown wheat genotypes.
    Huang CY; Kuchel H; Edwards J; Hall S; Parent B; Eckermann P; Herdina ; Hartley DM; Langridge P; McKay AC
    Sci Rep; 2013 Nov; 3():3194. PubMed ID: 24217242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root hairs enable high transpiration rates in drying soils.
    Carminati A; Passioura JB; Zarebanadkouki M; Ahmed MA; Ryan PR; Watt M; Delhaize E
    New Phytol; 2017 Nov; 216(3):771-781. PubMed ID: 28758687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotypic differences in deep water extraction associated with drought tolerance in wheat.
    Ober ES; Werner P; Flatman E; Angus WJ; Jack P; Smith-Reeve L; Tapsell C
    Funct Plant Biol; 2014 Oct; 41(11):1078-1086. PubMed ID: 32481059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.