BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3202517)

  • 21. Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling.
    Winterstein C; Trotter J; Krämer-Albers EM
    J Cell Sci; 2008 Mar; 121(Pt 6):834-42. PubMed ID: 18303048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on translocation of immunoglobulins across intestinal epithelium. II. Immunoelectron-microscopic localization of immunoglobulins and secretory component in human intestinal mucosa.
    Brown WR; Isobe Y; Nakane PK
    Gastroenterology; 1976 Dec; 71(6):985-95. PubMed ID: 992282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endocytic apparatus and transcytosis in epithelial cells of the vas deferens in the rat.
    Hermo L; de Melo V
    Anat Rec; 1987 Feb; 217(2):153-63. PubMed ID: 3578834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endocytosis in renal proximal tubules. Experimental electron microscopical studies of protein absorption and membrane traffic in isolated, in vitro perfused proximal tubules.
    Nielsen S
    Dan Med Bull; 1994 Jun; 41(3):243-63. PubMed ID: 7924457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relation between microvilli membrane potential and glucose transport capacity of rat small intestine.
    Luppa D; Hartenstein H; Müller F
    Biomed Biochim Acta; 1987; 46(5):341-8. PubMed ID: 3663205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endocytosis in epithelial cells lining the rete testis of the rat.
    Morales C; Hermo L; Clermont Y
    Anat Rec; 1984 Jun; 209(2):185-95. PubMed ID: 6465529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The columnar epithelial cell of the small intestine: digestion and transport. (First of three parts).
    Gardner JD; Brown MS; Laster L
    N Engl J Med; 1970 Nov; 283(22):1196-202. PubMed ID: 4919591
    [No Abstract]   [Full Text] [Related]  

  • 28. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions of viruses and microparticles with apical plasma membranes of M cells: implications for human immunodeficiency virus transmission.
    Neutra MR
    J Infect Dis; 1999 May; 179 Suppl 3():S441-3. PubMed ID: 10099115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake and transport of epidermal growth factor by the small intestinal epithelium of the fetal rat.
    Weaver LT; Gonnella PA; Israel EJ; Walker WA
    Gastroenterology; 1990 Apr; 98(4):828-37. PubMed ID: 2179033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptor-mediated transport of IgG across the intestinal epithelium of the neonatal rat.
    Rodewald R; Abrahamson DR
    Ciba Found Symp; 1982; (92):209-32. PubMed ID: 6295720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endocytic uptake, transport, and catabolism of proteins by epithelial cells.
    Wall DA; Maack T
    Am J Physiol; 1985 Jan; 248(1 Pt 1):C12-20. PubMed ID: 3881040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta 2-microglobulin co-distributes with the heavy chain of the intestinal IgG-Fc receptor throughout the transepithelial transport pathway of the neonatal rat.
    Berryman M; Rodewald R
    J Cell Sci; 1995 Jun; 108 ( Pt 6)():2347-60. PubMed ID: 7673354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of radiolabelled glycoprotein to cell surface and lysosome-like bodies of absorptive cells in clutured small-intestinal tissue from normal subjects and patients with a lysosomal storage disease.
    Ginsel LA; Onderwater JJ; Daems WT
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1979 Jun; 30(3):245-73. PubMed ID: 43006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular morphology of the digestive tract; macromolecules and food allergens are transferred intact across the intestinal absorptive cells during the neonatal-suckling period.
    Fujita M; Baba R; Shimamoto M; Sakuma Y; Fujimoto S
    Med Mol Morphol; 2007 Mar; 40(1):1-7. PubMed ID: 17384982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vesicular transport as a new paradigm in short-term regulation of transepithelial transport.
    Park CS; Leem CH; Jang YJ; Shim YH
    J Korean Med Sci; 2000 Apr; 15(2):123-32. PubMed ID: 10803686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of endotubin: an apical early endosomal glycoprotein from developing rat intestinal epithelial cells.
    Allen K; Gokay KE; Thomas MA; Speelman BA; Wilson JM
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):367-73. PubMed ID: 9461532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation, chemical characterization, and immunohistochemical localization of a protein from the basolateral plasma membrane of the rat intestinal absorptive cell.
    Schiechl H
    Z Naturforsch C J Biosci; 1989; 44(3-4):289-95. PubMed ID: 2663003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endocytosis in absorptive cells of cultured human small-intestinal tissue: horseradish peroxidase, lactoperoxidase, and ferritin as markers.
    Blok J; Mulder-Stapel AA; Ginsel LA; Daems WT
    Cell Tissue Res; 1981; 216(1):1-13. PubMed ID: 7226201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Vesicular intracellular transport in the digestive organs. Membrane vesicle--the universal mechanism of the functional transport].
    Morozov IA
    Eksp Klin Gastroenterol; 2014; (2):3-15. PubMed ID: 25518468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.