BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32025194)

  • 1. Palaeoecological records of coral community development on a turbid, nearshore reef complex: baselines for assessing ecological change.
    Johnson JA; Perry CT; Smithers SG; Morgan KM; Santodomingo N; Johnson KG
    Coral Reefs; 2017; 36(3):685-700. PubMed ID: 32025194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings.
    Morgan KM; Perry CT; Smithers SG; Johnson JA; Daniell JJ
    Sci Rep; 2016 Jul; 6():29616. PubMed ID: 27432782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability in the functional composition of coral reef fish communities on submerged and emergent reefs in the central Great Barrier Reef, Australia.
    Cooper AM; MacDonald C; Roberts TE; Bridge TCL
    PLoS One; 2019; 14(5):e0216785. PubMed ID: 31100087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of European settlement and land use changes on Great Barrier Reef river catchments reconstructed from long-term coral Ba/Ca records.
    D'Olivo JP; McCulloch M
    Sci Total Environ; 2022 Jul; 830():154461. PubMed ID: 35278559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palaeoecological evidence of a historical collapse of corals at Pelorus Island, inshore Great Barrier Reef, following European settlement.
    Roff G; Clark TR; Reymond CE; Zhao JX; Feng Y; McCook LJ; Done TJ; Pandolfi JM
    Proc Biol Sci; 2013 Jan; 280(1750):20122100. PubMed ID: 23135672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projections of coral cover and habitat change on turbid reefs under future sea-level rise.
    Morgan KM; Perry CT; Arthur R; Williams HTP; Smithers SG
    Proc Biol Sci; 2020 Jun; 287(1929):20200541. PubMed ID: 32546095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadening the taxonomic scope of coral reef palaeoecological studies using ancient DNA.
    Del Carmen Gomez Cabrera M; Young JM; Roff G; Staples T; Ortiz JC; Pandolfi JM; Cooper A
    Mol Ecol; 2019 May; 28(10):2636-2652. PubMed ID: 30723959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts.
    Mellin C; Matthews S; Anthony KRN; Brown SC; Caley MJ; Johns KA; Osborne K; Puotinen M; Thompson A; Wolff NH; Fordham DA; MacNeil MA
    Glob Chang Biol; 2019 Jul; 25(7):2431-2445. PubMed ID: 30900790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal to decadal scale influence of environmental drivers on Ba/Ca and Y/Ca in coral aragonite from the southern Great Barrier Reef.
    Saha N; Rodriguez-Ramirez A; Nguyen AD; Clark TR; Zhao JX; Webb GE
    Sci Total Environ; 2018 Oct; 639():1099-1109. PubMed ID: 29929279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A relic coral fauna threatened by global changes and human activities, Eastern Brazil.
    Leão ZM; Kikuchi RK
    Mar Pollut Bull; 2005; 51(5-7):599-611. PubMed ID: 15913660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. U-Th dating reveals regional-scale decline of branching
    Clark TR; Roff G; Zhao JX; Feng YX; Done TJ; McCook LJ; Pandolfi JM
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10350-10355. PubMed ID: 28893981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal variations in coral growth on an inshore turbid reef subjected to multiple disturbances.
    Browne NK
    Mar Environ Res; 2012 Jun; 77():71-83. PubMed ID: 22391236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute drivers influence recent inshore Great Barrier Reef dynamics.
    Lam VYY; Chaloupka M; Thompson A; Doropoulos C; Mumby PJ
    Proc Biol Sci; 2018 Nov; 285(1890):. PubMed ID: 30404884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of geomorphic zonation in long-term changes in coral-community structure on a Caribbean fringing reef.
    Medina-Valmaseda AE; Rodríguez-Martínez RE; Alvarez-Filip L; Jordan-Dahlgren E; Blanchon P
    PeerJ; 2020; 8():e10103. PubMed ID: 33150066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term effects of competition and environmental drivers on the growth of the endangered coral
    Ribeiro FV; Sá JA; Fistarol GO; Salomon PS; Pereira RC; Souza MLAM; Neves LM; Amado-Filho GM; Francini-Filho RB; Salgado LT; Bastos AC; Pereira-Filho GH; Moraes FC; Moura RL
    PeerJ; 2018; 6():e5419. PubMed ID: 30128199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criteria for effective regional scale catchment to reef management: A case study of Australia's Great Barrier Reef.
    Creighton C; Waterhouse J; Day JC; Brodie J
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112882. PubMed ID: 34534939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef world heritage area, Australia.
    Bridge T; Beaman R; Done T; Webster J
    PLoS One; 2012; 7(10):e48203. PubMed ID: 23118952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.
    Lukoschek V; Riginos C; van Oppen MJ
    Mol Ecol; 2016 Jul; 25(13):3065-80. PubMed ID: 27085309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vulnerability of the Great Barrier Reef to climate change and local pressures.
    Wolff NH; Mumby PJ; Devlin M; Anthony KRN
    Glob Chang Biol; 2018 May; 24(5):1978-1991. PubMed ID: 29420869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water quality mediates resilience on the Great Barrier Reef.
    MacNeil MA; Mellin C; Matthews S; Wolff NH; McClanahan TR; Devlin M; Drovandi C; Mengersen K; Graham NAJ
    Nat Ecol Evol; 2019 Apr; 3(4):620-627. PubMed ID: 30858590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.