These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32025451)
1. Disentangling Drivers of Meteorological Droughts in the European Greater Alpine Region During the Last Two Centuries. Haslinger K; Hofstätter M; Kroisleitner C; Schöner W; Laaha G; Holawe F; Blöschl G J Geophys Res Atmos; 2019 Dec; 124(23):12404-12425. PubMed ID: 32025451 [TBL] [Abstract][Full Text] [Related]
2. Risk of short-term biodiversity loss under more persistent precipitation regimes. Reynaert S; De Boeck HJ; Verbruggen E; Verlinden M; Flowers N; Nijs I Glob Chang Biol; 2021 Apr; 27(8):1614-1626. PubMed ID: 33355970 [TBL] [Abstract][Full Text] [Related]
3. Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. Haslinger K; Hofstätter M; Schöner W; Blöschl G Clim Dyn; 2021; 57(3-4):1009-1021. PubMed ID: 34720434 [TBL] [Abstract][Full Text] [Related]
4. Linking drought indices to atmospheric circulation in Svalbard, in the Atlantic sector of the High Arctic. Migała K; Łupikasza E; Osuch M; Opała-Owczarek M; Owczarek P Sci Rep; 2024 Jan; 14(1):2160. PubMed ID: 38272941 [TBL] [Abstract][Full Text] [Related]
5. Scale Dependence of Land-Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and South-Central United States. Zhou Y; Wu D; Lau WK; Tao WK J Hydrometeorol; 2016 Aug; 17(8):2121-2136. PubMed ID: 32818025 [TBL] [Abstract][Full Text] [Related]
6. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. Dannenberg MP; Yan D; Barnes ML; Smith WK; Johnston MR; Scott RL; Biederman JA; Knowles JF; Wang X; Duman T; Litvak ME; Kimball JS; Williams AP; Zhang Y Glob Chang Biol; 2022 Aug; 28(16):4794-4806. PubMed ID: 35452156 [TBL] [Abstract][Full Text] [Related]
7. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Zhou S; Williams AP; Berg AM; Cook BI; Zhang Y; Hagemann S; Lorenz R; Seneviratne SI; Gentine P Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18848-18853. PubMed ID: 31481606 [TBL] [Abstract][Full Text] [Related]
8. Spring water deficit and soil conditions matter more than seed origin and summer drought for the establishment of temperate conifers. Moser B; Walthert L; Metslaid M; Wasem U; Wohlgemuth T Oecologia; 2017 Feb; 183(2):519-530. PubMed ID: 27832367 [TBL] [Abstract][Full Text] [Related]
9. Revisiting the recent European droughts from a long-term perspective. Hanel M; Rakovec O; Markonis Y; Máca P; Samaniego L; Kyselý J; Kumar R Sci Rep; 2018 Jun; 8(1):9499. PubMed ID: 29934591 [TBL] [Abstract][Full Text] [Related]
10. Early warm-season mesoscale convective systems dominate soil moisture-precipitation feedback for summer rainfall in central United States. Hu H; Leung LR; Feng Z Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34663726 [TBL] [Abstract][Full Text] [Related]
11. Recent European drying and its link to prevailing large-scale atmospheric patterns. Bakke SJ; Ionita M; Tallaksen LM Sci Rep; 2023 Dec; 13(1):21921. PubMed ID: 38081910 [TBL] [Abstract][Full Text] [Related]
12. Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns. Kapsch ML; Skific N; Graversen RG; Tjernström M; Francis JA Clim Dyn; 2019; 52(3):2497-2512. PubMed ID: 30956407 [TBL] [Abstract][Full Text] [Related]
13. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts. Liu Y; Shan F; Yue H; Wang X; Fan Y J Environ Manage; 2023 May; 333():117460. PubMed ID: 36758412 [TBL] [Abstract][Full Text] [Related]
14. Drought self-propagation in drylands due to land-atmosphere feedbacks. Schumacher DL; Keune J; Dirmeyer P; Miralles DG Nat Geosci; 2022 Apr; 15(4):262-268. PubMed ID: 35422877 [TBL] [Abstract][Full Text] [Related]
15. Soil moisture precipitation feedbacks in the Eastern European Alpine region in convection-permitting climate simulations. Truhetz H; Mishra AN Int J Climatol; 2023 Nov; 43(14):6763-6782. PubMed ID: 38505215 [TBL] [Abstract][Full Text] [Related]
16. Preferential states in soil moisture and climate dynamics. D'Odorico P; Porporato A Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8848-51. PubMed ID: 15184676 [TBL] [Abstract][Full Text] [Related]
17. Multi-century (635-year) spring season precipitation reconstruction from northern Pakistan revealed increasing extremes. Khan N; Gaire NP; Rahmonov O; Ullah R Sci Rep; 2024 Jan; 14(1):92. PubMed ID: 38168593 [TBL] [Abstract][Full Text] [Related]
18. Inter-relationship between subtropical Pacific sea surface temperature, Arctic sea ice concentration, and North Atlantic Oscillation in recent summers. Lim YK; Cullather RI; Nowicki SMJ; Kim KM Sci Rep; 2019 Mar; 9(1):3481. PubMed ID: 30837570 [TBL] [Abstract][Full Text] [Related]
19. Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma-Texas drought. Hong SY; Kalnay E Nature; 2000 Dec; 408(6814):842-4. PubMed ID: 11130719 [TBL] [Abstract][Full Text] [Related]
20. Combined performance of September's Weddell sea ice extent, Southern Annular Mode, and Atlantic SST anomalies over the South American temperature and precipitation. Vasconcellos FC; Oliva FG; Pizzochero RM; Silva TMD; Parise CK; Caldas CF An Acad Bras Cienc; 2022; 94(suppl 1):e20210803. PubMed ID: 35416856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]