These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 32025505)
1. Improving cost-efficiency for MPs density separation by zinc chloride reuse. Rodrigues MO; Gonçalves AMM; Gonçalves FJM; Abrantes N MethodsX; 2020; 7():100785. PubMed ID: 32025505 [TBL] [Abstract][Full Text] [Related]
2. Selection of a density separation solution to study microplastics in tropical riverine sediment. Duong TT; Le PT; Nguyen TNH; Hoang TQ; Ngo HM; Doan TO; Le TPQ; Bui HT; Bui MH; Trinh VT; Nguyen TL; Da Le N; Vu TM; Tran TKC; Ho TC; Phuong NN; Strady E Environ Monit Assess; 2022 Jan; 194(2):65. PubMed ID: 34993616 [TBL] [Abstract][Full Text] [Related]
3. A simple overflow density separation method that recovers >95% of dense microplastics from sediment. Crutchett TW; Bornt KR MethodsX; 2024 Jun; 12():102638. PubMed ID: 38445174 [TBL] [Abstract][Full Text] [Related]
4. Efficient microplastics extraction from sand. A cost effective methodology based on sodium iodide recycling. Kedzierski M; Le Tilly V; César G; Sire O; Bruzaud S Mar Pollut Bull; 2017 Feb; 115(1-2):120-129. PubMed ID: 28040250 [TBL] [Abstract][Full Text] [Related]
5. A straightforward method for measuring the range of apparent density of microplastics. Li L; Li M; Deng H; Cai L; Cai H; Yan B; Hu J; Shi H Sci Total Environ; 2018 Oct; 639():367-373. PubMed ID: 29791889 [TBL] [Abstract][Full Text] [Related]
6. A novel heating-assisted density separation method for extracting microplastics from sediments. Zhang X; Yu K; Zhang H; Liu Y; He J; Liu X; Jiang J Chemosphere; 2020 Oct; 256():127039. PubMed ID: 32559886 [TBL] [Abstract][Full Text] [Related]
7. Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment. Cutroneo L; Reboa A; Besio G; Borgogno F; Canesi L; Canuto S; Dara M; Enrile F; Forioso I; Greco G; Lenoble V; Malatesta A; Mounier S; Petrillo M; Rovetta R; Stocchino A; Tesan J; Vagge G; Capello M Environ Sci Pollut Res Int; 2020 Mar; 27(9):8938-8952. PubMed ID: 32026372 [TBL] [Abstract][Full Text] [Related]
8. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Scopetani C; Chelazzi D; Mikola J; Leiniö V; Heikkinen R; Cincinelli A; Pellinen J Sci Total Environ; 2020 Sep; 733():139338. PubMed ID: 32446078 [TBL] [Abstract][Full Text] [Related]
9. Pretreatment methods for monitoring microplastics in soil and freshwater sediment samples: A comprehensive review. Lee H; Kim S; Sin A; Kim G; Khan S; Nadagouda MN; Sahle-Demessie E; Han C Sci Total Environ; 2023 May; 871():161718. PubMed ID: 36709896 [TBL] [Abstract][Full Text] [Related]
10. Adaptation of a laboratory protocol to quantity microplastics contamination in estuarine waters. Rodrigues SM; R Almeida CM; Ramos S MethodsX; 2019; 6():740-749. PubMed ID: 31011546 [TBL] [Abstract][Full Text] [Related]
11. A high-performance protocol for extraction of microplastics in fish. Karami A; Golieskardi A; Choo CK; Romano N; Ho YB; Salamatinia B Sci Total Environ; 2017 Feb; 578():485-494. PubMed ID: 27836345 [TBL] [Abstract][Full Text] [Related]
12. A new analytical approach for monitoring microplastics in marine sediments. Nuelle MT; Dekiff JH; Remy D; Fries E Environ Pollut; 2014 Jan; 184():161-9. PubMed ID: 24051349 [TBL] [Abstract][Full Text] [Related]
13. A new small device made of glass for separating microplastics from marine and freshwater sediments. Nakajima R; Tsuchiya M; Lindsay DJ; Kitahashi T; Fujikura K; Fukushima T PeerJ; 2019; 7():e7915. PubMed ID: 31656703 [TBL] [Abstract][Full Text] [Related]
14. Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney. Amara S; Slama IB; Mrad I; Rihane N; Khemissi W; El Mir L; Rhouma KB; Abdelmelek H; Sakly M Hum Exp Toxicol; 2014 Nov; 33(11):1150-7. PubMed ID: 24501101 [TBL] [Abstract][Full Text] [Related]
15. Microplastics in freshwater sediments of Atoyac River basin, Puebla City, Mexico. Shruti VC; Jonathan MP; Rodriguez-Espinosa PF; Rodríguez-González F Sci Total Environ; 2019 Mar; 654():154-163. PubMed ID: 30445318 [TBL] [Abstract][Full Text] [Related]
16. [Effect of Dissolved Humic Acid on Thyroid Receptor Antagonistic Activity of Zinc in Aquatic Environment]. Ai Y; Kong DD; Yu C; Shen Y; Li J Huan Jing Ke Xue; 2017 Jan; 38(1):195-200. PubMed ID: 29965047 [TBL] [Abstract][Full Text] [Related]
17. Zinc chloride aqueous solution as a solvent for starch. Lin M; Shang X; Liu P; Xie F; Chen X; Sun Y; Wan J Carbohydr Polym; 2016 Jan; 136():266-73. PubMed ID: 26572355 [TBL] [Abstract][Full Text] [Related]
18. Contamination of table salts from Turkey with microplastics. Gündoğdu S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 May; 35(5):1006-1014. PubMed ID: 29505336 [TBL] [Abstract][Full Text] [Related]
19. An optimized density-based approach for extracting microplastics from soil and sediment samples. Han X; Lu X; Vogt RD Environ Pollut; 2019 Nov; 254(Pt A):113009. PubMed ID: 31419661 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial effectiveness of cetylpyridinium chloride and zinc chloride-containing mouthrinses on bacteria of halitosis and peri-implant disease. Kang JH; Jang YJ; Kim DJ; Park JW Int J Oral Maxillofac Implants; 2015; 30(6):1341-7. PubMed ID: 26478974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]