These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32025666)

  • 21. Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses.
    Lima NC; Mishra K; Mugele F
    Opt Express; 2017 Mar; 25(6):6700-6711. PubMed ID: 28381014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Developments in Optofluidic Lens Technology.
    Mishra K; van den Ende D; Mugele F
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power.
    Dietze HH; Cox MJ
    Optom Vis Sci; 2003 Feb; 80(2):126-34. PubMed ID: 12597327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peripheral refraction and spherical aberration profiles with single vision, bifocal and multifocal soft contact lenses.
    Fedtke C; Ehrmann K; Bakaraju RC
    J Optom; 2020; 13(1):15-28. PubMed ID: 30772211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive liquid microlenses activated by stimuli-responsive hydrogels.
    Dong L; Agarwal AK; Beebe DJ; Jiang H
    Nature; 2006 Aug; 442(7102):551-4. PubMed ID: 16885981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable fluidic lens with a dynamic high-order aberration control.
    Zhao P; Sauter D; Zappe H
    Appl Opt; 2021 Jun; 60(18):5302-5311. PubMed ID: 34263767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A review of mathematical descriptors of corneal asphericity].
    Gatinel D; Haouat M; Hoang-Xuan T
    J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of spherical aberration free liquid-filled cylindrical zoom lenses over a wide focal length range based on ZEMAX.
    Sun L; Sheng S; Meng W; Wang Y; Ou Q; Pu X
    Opt Express; 2020 Mar; 28(5):6806-6819. PubMed ID: 32225920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism.
    Marcos S; Rosales P; Llorente L; Barbero S; Jiménez-Alfaro I
    Vision Res; 2008 Jan; 48(1):70-9. PubMed ID: 18054373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling and optimization of micro optofluidic lenses.
    Song C; Nguyen NT; Tan SH; Asundi AK
    Lab Chip; 2009 May; 9(9):1178-84. PubMed ID: 19370234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination.
    González-Galicia MA; Rosete-Aguilar M; Garduño-Mejía J; Bruce NC; Ortega-Martínez R
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):1979-89. PubMed ID: 21979502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible meniscus/biconvex lens system with fluidic-controlled tunable-focus applications.
    Feng GH; Chou YC
    Appl Opt; 2009 Jun; 48(18):3284-90. PubMed ID: 19543333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Focus-tunable liquid lens with an aspherical membrane for improved central and peripheral resolutions at high diopters.
    Wei K; Huang H; Wang Q; Zhao Y
    Opt Express; 2016 Feb; 24(4):3929-39. PubMed ID: 26907046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration.
    Weeber HA; Piers PA
    J Refract Surg; 2012 Jan; 28(1):48-52. PubMed ID: 22074466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens.
    Lee SL; Yang CF
    Opt Express; 2008 Nov; 16(24):19995-20007. PubMed ID: 19030086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens.
    Fang C; Dai B; Zhuo R; Yuan X; Gao X; Wen J; Sheng B; Zhang D
    Opt Lett; 2016 Jan; 41(2):404-7. PubMed ID: 26766725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure.
    Mao X; Stratton ZI; Nawaz AA; Lin SC; Huang TJ
    Biomicrofluidics; 2010 Dec; 4(4):43007. PubMed ID: 21267439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical development of the ocular lens of an elasmobranch, Raja eglanteria [corrected].
    Sivak JG; Luer CA
    Vision Res; 1991; 31(3):373-82. PubMed ID: 1843749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harnessing Mechanical Deformation to Reduce Spherical Aberration in Soft Lenses.
    Zareei A; Medina E; Bertoldi K
    Phys Rev Lett; 2021 Feb; 126(8):084301. PubMed ID: 33709741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superconical aplanatic ovoid singlet lenses.
    Silva-Lora A; Torres R
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jul; 37(7):1155-1165. PubMed ID: 32609676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.