These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32025686)

  • 1. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core-shell hybrids for efficient photocatalytic hydrogen generation.
    Ma L; Chen YL; Yang DJ; Li HX; Ding SJ; Xiong L; Qin PL; Chen XB
    Nanoscale; 2020 Feb; 12(7):4383-4392. PubMed ID: 32025686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Adjustable Gold Nanoingots with Strong Plasmon Coupling and Magnetic Resonance for Improved Photocatalytic Activity and SERS.
    Ma L; Chen YL; Song XP; Yang DJ; Li HX; Ding SJ; Xiong L; Qin PL; Chen XB
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38554-38562. PubMed ID: 32846467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au@Cu
    Lai TH; Tsao CW; Fang MJ; Wu JY; Chang YP; Chiu YH; Hsieh PY; Kuo MY; Chang KD; Hsu YJ
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40771-40783. PubMed ID: 36040289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating Facet-Dependent Photocatalytic Activities of Metastable CdS and Au@CdS Core-Shell Nanocrystals.
    Ge F; Zhao Y; Feng C; Li X; Wang J; Liu H; Hu L; Chen Y; Chen F; Cheng F; Wei HY; Wu XJ
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32847-32856. PubMed ID: 38862405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light.
    Zheng Z; Wang T; Han F; Yang Q; Li B
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):47-56. PubMed ID: 34388572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Plasmon Resonances and Tunable Electric Field in Structure-Adjustable Au Nanoflowers for Improved SERS and Photocatalysis.
    Zhao YX; Kang HS; Zhao WQ; Chen YL; Ma L; Ding SJ; Chen XB; Wang QQ
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Nanocrystal Assembly-Semiconductor Hybrids for Boosting Visible to Near-Infrared Photocatalysis.
    Kim Y; Wi DH; Hong JW; Han SW
    ACS Nano; 2023 Sep; 17(18):18641-18651. PubMed ID: 37702701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Largely enhanced photocatalytic hydrogen production rate of CdS/(Au-ReS
    Liu J; Chen K; Pan GM; Luo ZJ; Xie Y; Li YY; Lin YJ; Hao ZH; Zhou L; Ding SJ; Wang QQ
    Nanoscale; 2018 Nov; 10(41):19586-19594. PubMed ID: 30324954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved CdS photocatalytic H
    Yue X; Hou J; Zhang Y; Wu P; Guo Y; Peng S; Liu Z; Jiang H
    Dalton Trans; 2020 Jun; 49(22):7467-7473. PubMed ID: 32432591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites.
    Yang JL; Xu J; Ren H; Sun L; Xu QC; Zhang H; Li JF; Tian ZQ
    Nanoscale; 2017 May; 9(19):6254-6258. PubMed ID: 28463374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open-Nanogap-Induced Strong Electromagnetic Enhancement in Au/AgAu Monolayer as a Stable and Uniform SERS Substrate for Ultrasensitive Detection.
    Zhao YX; Liang X; Chen YL; Chen YT; Ma L; Ding SJ; Chen XB; Wang QQ
    Anal Chem; 2024 May; 96(21):8416-8423. PubMed ID: 38755966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Scattering and Near Field of TiO
    Liu M; Jin X; Li S; Billeau JB; Peng T; Li H; Zhao L; Zhang Z; Claverie JP; Razzari L; Zhang J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34714-34723. PubMed ID: 34269047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance enhanced direct Z-scheme TiO
    Zhang W; Hu Y; Yan C; Hong D; Chen R; Xue X; Yang S; Tian Y; Tie Z; Jin Z
    Nanoscale; 2019 May; 11(18):9053-9060. PubMed ID: 31025687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core-satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and H2 production from water.
    Zhang J; Wang P; Sun J; Jin Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19905-13. PubMed ID: 25369420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au/CdS Core-Shell Sensitized Actinomorphic Flower-Like ZnO Nanorods for Enhanced Photocatalytic Water Splitting Performance.
    Li Y; Liu T; Feng S; Yang W; Zhu Y; Zhao Y; Liu Z; Yang H; Fu W
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33477337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.
    Wang X; Shih K; Li XY
    Water Sci Technol; 2010; 61(9):2303-8. PubMed ID: 20418627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon Coupling-Induced Hot Electrons for Photocatalytic Hydrogen Generation.
    Yuan X; Zhen W; Yu S; Xue C
    Chem Asian J; 2021 Nov; 16(22):3683-3688. PubMed ID: 34505398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.
    Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J
    Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.