These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32025688)

  • 21. A Hierarchical 3D TiO
    Alqahtani M; Kafizas A; Sathasivam S; Ebaid M; Cui F; Alyamani A; Jeong HH; Chun Lee T; Fischer P; Parkin I; Grätzel M; Wu J
    ChemSusChem; 2020 Nov; 13(22):6028-6036. PubMed ID: 32986913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon-Sensitized Graphene/TiO
    Boppella R; Kochuveedu ST; Kim H; Jeong MJ; Marques Mota F; Park JH; Kim DH
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7075-7083. PubMed ID: 28170225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.
    Cao F; Xiong J; Wu F; Liu Q; Shi Z; Yu Y; Wang X; Li L
    ACS Appl Mater Interfaces; 2016 May; 8(19):12239-45. PubMed ID: 27136708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting.
    Liu Q; Lu H; Shi Z; Wu F; Guo J; Deng K; Li L
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17200-7. PubMed ID: 25225738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorus Cation Doping: A New Strategy for Boosting Photoelectrochemical Performance on TiO
    Li Z; Xin Y; Wu W; Fu B; Zhang Z
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30972-30979. PubMed ID: 27791348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of the TiO
    Fan X; Wang T; Gao B; Gong H; Xue H; Guo H; Song L; Xia W; Huang X; He J
    Langmuir; 2016 Dec; 32(50):13322-13332. PubMed ID: 27936327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting.
    Butson JD; Narangari PR; Lysevych M; Wong-Leung J; Wan Y; Karuturi SK; Tan HH; Jagadish C
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25236-25242. PubMed ID: 31265227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Titanium Dioxide Nanorods with Hydrogenated Oxygen Vacancies for Enhanced Solar Water Splitting.
    Sun B; Shi T; Tan X; Liu Z; Wu Y; Liao G
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6148-54. PubMed ID: 27427684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-Energy Hydrogen Ions Enable Efficient Room-Temperature and Rapid Plasma Hydrogenation of TiO
    Wang X; Mayrhofer L; Keunecke M; Estrade S; Lopez-Conesa L; Moseler M; Waag A; Schaefer L; Shi W; Meng X; Chu J; Fan Z; Shen H
    Small; 2022 Nov; 18(46):e2204136. PubMed ID: 36192163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation.
    Yuan W; Yuan J; Xie J; Li CM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6082-92. PubMed ID: 26908094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co
    Wang Y; Li F; Zhou X; Yu F; Du J; Bai L; Sun L
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6911-6915. PubMed ID: 28474835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating Semiconducting Catalyst of ReS
    Zhao H; Dai Z; Xu X; Pan J; Hu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23074-23080. PubMed ID: 29932637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Semiconductor-Mediator-Catalyst Artificial Photosynthetic System for Photoelectrochemical Water Oxidation.
    Niu F; Wang D; Williams LJ; Nayak A; Li F; Chen X; Troian-Gautier L; Huang Q; Liu Y; Brennaman MK; Papanikolas JM; Guo L; Shen S; Meyer TJ
    Chemistry; 2022 Feb; 28(10):e202102630. PubMed ID: 35113460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting.
    Dos Santos WS; Rodriguez M; Afonso AS; Mesquita JP; Nascimento LL; PatrocĂ­nio AO; Silva AC; Oliveira LC; Fabris JD; Pereira MC
    Sci Rep; 2016 Aug; 6():31406. PubMed ID: 27503274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-Resolved Observations of Photo-Generated Charge-Carrier Dynamics in Sb
    Yang W; Lee S; Kwon HC; Tan J; Lee H; Park J; Oh Y; Choi H; Moon J
    ACS Nano; 2018 Nov; 12(11):11088-11097. PubMed ID: 30358980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.