These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 32025789)
1. Diffusion dynamics on the coexistence subspace in a stochastic evolutionary game. Popovic L; Peuckert L J Math Biol; 2020 May; 80(6):1655-1682. PubMed ID: 32025789 [TBL] [Abstract][Full Text] [Related]
3. Extinction dynamics from metastable coexistences in an evolutionary game. Park HJ; Traulsen A Phys Rev E; 2017 Oct; 96(4-1):042412. PubMed ID: 29347472 [TBL] [Abstract][Full Text] [Related]
4. Moran-type bounds for the fixation probability in a frequency-dependent Wright-Fisher model. Chumley T; Aydogmus O; Matzavinos A; Roitershtein A J Math Biol; 2018 Jan; 76(1-2):1-35. PubMed ID: 28509259 [TBL] [Abstract][Full Text] [Related]
5. Fixation probabilities in populations under demographic fluctuations. Czuppon P; Traulsen A J Math Biol; 2018 Oct; 77(4):1233-1277. PubMed ID: 29882011 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary game dynamics of the Wright-Fisher process with different selection intensities. Wang XJ; Gu CL; Quan J J Theor Biol; 2019 Mar; 465():17-26. PubMed ID: 30629962 [TBL] [Abstract][Full Text] [Related]
7. From Fixation Probabilities to d-player Games: An Inverse Problem in Evolutionary Dynamics. Chalub FACC; Souza MO Bull Math Biol; 2019 Nov; 81(11):4625-4642. PubMed ID: 30635836 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary games under incompetence. Kleshnina M; Filar JA; Ejov V; McKerral JC J Math Biol; 2018 Sep; 77(3):627-646. PubMed ID: 29484454 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary game dynamics with non-uniform interaction rates in finite population. Mei J; Tao Y; Li C; Zheng XD J Theor Biol; 2022 May; 540():111086. PubMed ID: 35271866 [TBL] [Abstract][Full Text] [Related]
10. On the stochastic evolution of finite populations. Chalub FACC; Souza MO J Math Biol; 2017 Dec; 75(6-7):1735-1774. PubMed ID: 28493042 [TBL] [Abstract][Full Text] [Related]
11. Extinction in neutrally stable stochastic Lotka-Volterra models. Dobrinevski A; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051903. PubMed ID: 23004784 [TBL] [Abstract][Full Text] [Related]
12. Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model. Reichenbach T; Mobilia M; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051907. PubMed ID: 17279939 [TBL] [Abstract][Full Text] [Related]
13. Why does invasion imply substitution? Beyond the paradigm of invasion fitness. Oba T; Kigami J J Math Biol; 2018 Nov; 77(5):1493-1532. PubMed ID: 29961929 [TBL] [Abstract][Full Text] [Related]
14. Fixation in large populations: a continuous view of a discrete problem. Chalub FA; Souza MO J Math Biol; 2016 Jan; 72(1-2):283-330. PubMed ID: 25917604 [TBL] [Abstract][Full Text] [Related]
15. Impact of environmental stochastic fluctuations on the evolutionary stability of imitation dynamics. Wang SY; Che YM; Tao Y; Zheng XD Phys Rev E; 2024 Aug; 110(2-1):024211. PubMed ID: 39294992 [TBL] [Abstract][Full Text] [Related]
16. Frequency-dependent fitness induces multistability in coevolutionary dynamics. Arnoldt H; Timme M; Grosskinsky S J R Soc Interface; 2012 Dec; 9(77):3387-96. PubMed ID: 22874094 [TBL] [Abstract][Full Text] [Related]
17. Fixation probabilities and hitting times for low levels of frequency-dependent selection. Pfaffelhuber P; Wakolbinger A Theor Popul Biol; 2018 Dec; 124():61-69. PubMed ID: 30273618 [TBL] [Abstract][Full Text] [Related]
18. The competitive exclusion principle in stochastic environments. Hening A; Nguyen DH J Math Biol; 2020 Apr; 80(5):1323-1351. PubMed ID: 31919652 [TBL] [Abstract][Full Text] [Related]
19. Extreme Selection Unifies Evolutionary Game Dynamics in Finite and Infinite Populations. Della Rossa F; Dercole F; Vicini C Bull Math Biol; 2017 May; 79(5):1070-1099. PubMed ID: 28364191 [TBL] [Abstract][Full Text] [Related]
20. Invasion probabilities, hitting times, and some fluctuation theory for the stochastic logistic process. Parsons TL J Math Biol; 2018 Oct; 77(4):1193-1231. PubMed ID: 29947947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]