These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 32025804)
1. Magnetic resonance imaging-based radiomic features for extrapolating infiltration levels of immune cells in lower-grade gliomas. Zhang X; Liu S; Zhao X; Shi X; Li J; Guo J; Niedermann G; Luo R; Zhang X Strahlenther Onkol; 2020 Oct; 196(10):913-921. PubMed ID: 32025804 [TBL] [Abstract][Full Text] [Related]
2. Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas. Park CJ; Han K; Kim H; Ahn SS; Choi YS; Park YW; Chang JH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Dec; 30(12):6464-6474. PubMed ID: 32740813 [TBL] [Abstract][Full Text] [Related]
3. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
5. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241 [TBL] [Abstract][Full Text] [Related]
6. Absolute quantification of tumor-infiltrating immune cells in high-grade glioma identifies prognostic and radiomics values. Kim AR; Choi KS; Kim MS; Kim KM; Kang H; Kim S; Chowdhury T; Yu HJ; Lee CE; Lee JH; Lee ST; Won JK; Kim JW; Kim YH; Kim TM; Park SH; Choi SH; Shin EC; Park CK Cancer Immunol Immunother; 2021 Jul; 70(7):1995-2008. PubMed ID: 33416947 [TBL] [Abstract][Full Text] [Related]
7. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
8. Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value. Lin P; Peng YT; Gao RZ; Wei Y; Li XJ; Huang SN; Fang YY; Wei ZX; Huang ZG; Yang H; Chen G J Cancer Res Clin Oncol; 2020 May; 146(5):1253-1262. PubMed ID: 32065261 [TBL] [Abstract][Full Text] [Related]
9. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
10. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study. Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592 [TBL] [Abstract][Full Text] [Related]
11. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478 [TBL] [Abstract][Full Text] [Related]
12. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences. Qin JB; Liu Z; Zhang H; Shen C; Wang XC; Tan Y; Wang S; Wu XF; Tian J Med Sci Monit; 2017 May; 23():2168-2178. PubMed ID: 28478462 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive quantitative radiogenomic evaluation reveals novel radiomic subtypes with distinct immune pattern in glioma. Sun Y; Zhang Y; Gan J; Zhou H; Guo S; Wang X; Zhang C; Zheng W; Zhao X; Li X; Wang L; Ning S Comput Biol Med; 2024 Jul; 177():108636. PubMed ID: 38810473 [TBL] [Abstract][Full Text] [Related]
14. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632 [TBL] [Abstract][Full Text] [Related]
15. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
17. Imaging phenotypes from MRI for the prediction of glioma immune subtypes from RNA sequencing: A multicenter study. Duan J; Zhang Z; Chen Y; Zhao Y; Sun Q; Wang W; Zheng H; Liang D; Cheng J; Yan J; Li ZC Mol Oncol; 2023 Apr; 17(4):629-646. PubMed ID: 36688633 [TBL] [Abstract][Full Text] [Related]
18. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas. Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598 [TBL] [Abstract][Full Text] [Related]
19. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning. Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177 [TBL] [Abstract][Full Text] [Related]
20. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Li G; Li L; Li Y; Qian Z; Wu F; He Y; Jiang H; Li R; Wang D; Zhai Y; Wang Z; Jiang T; Zhang J; Zhang W Brain; 2022 Apr; 145(3):1151-1161. PubMed ID: 35136934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]