These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 32025894)
1. Estimation of arsenic background concentration in stream sediments in Zia-Abad area (NW Iran). Maanijou M; Poursheikhi E; Ramezani T Environ Monit Assess; 2020 Feb; 192(3):165. PubMed ID: 32025894 [TBL] [Abstract][Full Text] [Related]
2. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK. Rieuwerts JS; Mighanetara K; Braungardt CB; Rollinson GK; Pirrie D; Azizi F Sci Total Environ; 2014 Feb; 472():226-34. PubMed ID: 24295744 [TBL] [Abstract][Full Text] [Related]
3. Natural decrease of dissolved arsenic in a small stream receiving drainages of abandoned silver mines in Guanajuato, Mexico. Arroyo YR; Muñoz AH; Barrientos EY; Huerta IR; Wrobel K; Wrobel K Bull Environ Contam Toxicol; 2013 Nov; 91(5):539-44. PubMed ID: 23995851 [TBL] [Abstract][Full Text] [Related]
4. Evaluating stream sediment chemistry within an agricultural catchment of Lebanon, Northeastern USA. Oyewumi O; Feldman J; Gourley JR Environ Monit Assess; 2017 Apr; 189(4):141. PubMed ID: 28258338 [TBL] [Abstract][Full Text] [Related]
5. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W>Sn mine (NE Portugal). Antunes IM; Gomes ME; Neiva AM; Carvalho PC; Santos AC Ecotoxicol Environ Saf; 2016 Nov; 133():135-45. PubMed ID: 27448230 [TBL] [Abstract][Full Text] [Related]
6. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal). Antunes IMHR; Neiva AMR; Albuquerque MTD; Carvalho PCS; Santos ACT; Cunha PP Environ Geochem Health; 2018 Feb; 40(1):521-542. PubMed ID: 28343275 [TBL] [Abstract][Full Text] [Related]
7. Trace elements geochemistry in high-incidence areas of liver-related diseases, northwestern Ethiopia. Ahmed J Environ Geochem Health; 2020 May; 42(5):1235-1254. PubMed ID: 31506874 [TBL] [Abstract][Full Text] [Related]
8. Spatial distribution and vertical profile of heavy metals in marine sediments around Iran's special economic energy zone; Arsenic as an enriched contaminant. Aghadadashi V; Neyestani MR; Mehdinia A; Riyahi Bakhtiari A; Molaei S; Farhangi M; Esmaili M; Rezai Marnani H; Gerivani H Mar Pollut Bull; 2019 Jan; 138():437-450. PubMed ID: 30660293 [TBL] [Abstract][Full Text] [Related]
9. Assessment of geogenic input into Bilina stream sediments (Czech Republic). Vöröš D; Geršlová E; Nývlt D; Geršl M; Kuta J Environ Monit Assess; 2019 Jan; 191(2):114. PubMed ID: 30694388 [TBL] [Abstract][Full Text] [Related]
10. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
11. A medical geology study of an arsenic-contaminated area in Kouhsorkh, NE Iran. Tabasi S; Abedi A Environ Geochem Health; 2012 Apr; 34(2):171-9. PubMed ID: 21960314 [TBL] [Abstract][Full Text] [Related]
12. [Arsenic speciation and bioavailability in the Yangtze estuary in spring, 2006]. Huang QH; Ma ZW; Li JH; Dong LX; Chen L Huan Jing Ke Xue; 2008 Aug; 29(8):2131-6. PubMed ID: 18839561 [TBL] [Abstract][Full Text] [Related]
13. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano. Ormachea Muñoz M; Wern H; Johnsson F; Bhattacharya P; Sracek O; Thunvik R; Quintanilla J; Bundschuh J J Hazard Mater; 2013 Nov; 262():924-40. PubMed ID: 24091126 [TBL] [Abstract][Full Text] [Related]
14. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
15. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830 [TBL] [Abstract][Full Text] [Related]
16. Arsenic and trace metals in river water and sediments from the southeast portion of the Iron Quadrangle, Brazil. Varejão EV; Bellato CR; Fontes MP; Mello JW Environ Monit Assess; 2011 Jan; 172(1-4):631-42. PubMed ID: 20238242 [TBL] [Abstract][Full Text] [Related]
17. Spatial and temporal variability of metal(loid)s concentration as well as simultaneous determination of five arsenic and antimony species using HPLC-ICP-MS technique in the study of water and bottom sediments of the shallow, lowland, dam reservoir in Poland. Jabłońska-Czapla M; Grygoyć K Environ Sci Pollut Res Int; 2020 Apr; 27(11):12358-12375. PubMed ID: 31993903 [TBL] [Abstract][Full Text] [Related]
18. Arsenic fractionation and mineralogical characterization of sediments in the Cold Lake area of Alberta, Canada. Javed MB; Kachanoski G; Siddique T Sci Total Environ; 2014 Dec; 500-501():181-90. PubMed ID: 25217755 [TBL] [Abstract][Full Text] [Related]
19. Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. Gray JE; Theodorakos PM; Bailey EA; Turner RR Sci Total Environ; 2000 Oct; 260(1-3):21-33. PubMed ID: 11032113 [TBL] [Abstract][Full Text] [Related]
20. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River. Đorđievski S; Ishiyama D; Ogawa Y; Stevanović Z Environ Sci Pollut Res Int; 2018 Sep; 25(25):25005-25019. PubMed ID: 29934829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]