These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3202629)

  • 1. New naphthalene-degrading marine Pseudomonas strains.
    García-Valdés E; Cozar E; Rotger R; Lalucat J; Ursing J
    Appl Environ Microbiol; 1988 Oct; 54(10):2478-85. PubMed ID: 3202629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment.
    Tagger S; Truffaut N; Le Petit J
    Can J Microbiol; 1990 Oct; 36(10):676-81. PubMed ID: 2253108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains.
    Rosselló-Mora RA; Lalucat J; García-Valdés E
    Appl Environ Microbiol; 1994 Mar; 60(3):966-72. PubMed ID: 8161187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia].
    Vacca GS; Kiesel B; Wünsche L; Pucci OH
    Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer.
    Ma Y; Wang L; Shao Z
    Environ Microbiol; 2006 Mar; 8(3):455-65. PubMed ID: 16478452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity among aromatic hydrocarbon-degrading bacteria and their meta-cleavage genes.
    Daly K; Dixon AC; Swannell RP; Lepo JE; Head IM
    J Appl Microbiol; 1997 Oct; 83(4):421-9. PubMed ID: 9351224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two naphthalene degrading bacteria belonging to the genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants.
    Pepi M; Lobianco A; Renzi M; Perra G; Bernardini E; Marvasi M; Gasperini S; Volterrani M; Franchi E; Heipieper HJ; Focardi SE
    Extremophiles; 2009 Sep; 13(5):839-48. PubMed ID: 19621207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes.
    Cavalca L; Dell'Amico E; Andreoni V
    Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase.
    Hedlund BP; Geiselbrecht AD; Staley JT
    FEMS Microbiol Lett; 2001 Jul; 201(1):47-51. PubMed ID: 11445166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni.
    Goyal AK; Zylstra GJ
    J Ind Microbiol Biotechnol; 1997; 19(5-6):401-7. PubMed ID: 9451837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Microbiol Res; 2005; 160(2):149-57. PubMed ID: 15881832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of Gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments.
    Zhuang WQ; Tay JH; Maszenan AM; Krumholz LR; Tay ST
    Lett Appl Microbiol; 2003; 36(4):251-7. PubMed ID: 12641721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition of plasmid-bearing Pseudomonas putida strains catabolizing naphthalene via various pathways in chemostat culture.
    Filonov AE; Duetz WA; Karpov AV; Gaiazov RR; Kosheleva IA; Breure AM; Filonova IF; van Andel JG; Boronin AM
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):493-8. PubMed ID: 9390458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas].
    Levchuk AA; Vasilenko SL; Bulyga IM; Titok MA; Thomas KM
    Izv Akad Nauk Ser Biol; 2005; (2):162-7. PubMed ID: 16004276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of naphthalene biodegradation plasmids on physiological characteristics of rhizospheric bacteria of the genus Pseudomonas].
    Volkova OV; Anokhina TO; Puntus IF; Kochetkov VV; Filonov AE; Boronin AM
    Prikl Biokhim Mikrobiol; 2005; 41(5):525-9. PubMed ID: 16240650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes.
    Meyer S; Moser R; Neef A; Stahl U; Kämpfer P
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1731-1741. PubMed ID: 10439412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Genetic control of naphthalene biodegradation by a strain of Pseudomonas sp. 8909N].
    Kosheleva IA; Sokolov SL; Balashova NV; Filonov AE; Meleshko EI; Gaiazov RR; Boronin AM
    Genetika; 1997 Jun; 33(6):762-8. PubMed ID: 9289413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decalin-consuming bacterial community.
    Vitale AA; Viale AA
    Rev Argent Microbiol; 1994; 26(1):28-35. PubMed ID: 7938498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.