BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32026370)

  • 1. Characterization of binding interaction of triclosan and trypsin.
    Wang X; Hui H; Yu A; Jiang Z; Yu H; Zou L; Teng Y
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13409-13416. PubMed ID: 32026370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of binding interaction of triclosan and bovine serum albumin.
    Wang X; Zou L; Mi C; Yu H; Dong M; Teng Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(3):318-325. PubMed ID: 31762378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the interaction between triclosan and bovine serum albumin by spectroscopic methods.
    Gu J; Zheng S; Zhao H; Sun T
    J Environ Sci Health B; 2020; 55(1):52-59. PubMed ID: 31453744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular interaction of triclosan with superoxide dismutase (SOD) reveals a potentially toxic mechanism of the antimicrobial agent.
    Mi C; Teng Y; Wang X; Yu H; Huang Z; Zong W; Zou L
    Ecotoxicol Environ Saf; 2018 May; 153():78-83. PubMed ID: 29407741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of sodium dodecyl sulfate with trypsin: Multi-spectroscopic analysis, molecular docking, and molecular dynamics simulation.
    Ma H; Zou T; Li H; Cheng H
    Int J Biol Macromol; 2020 Nov; 162():1546-1554. PubMed ID: 32781131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking-based inverse virtual screening strategy for identification of novel protein targets for triclosan.
    Bhardwaj P; Biswas GP; Bhunia B
    Chemosphere; 2019 Nov; 235():976-984. PubMed ID: 31561314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of triclosan and triclocarban to pepsin: DFT, spectroscopic and dynamic simulation studies.
    Yue Y; Wang Z; Zhang Y; Wang Z; Lv Q; Liu J
    Chemosphere; 2019 Jan; 214():278-287. PubMed ID: 30265935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling.
    Song W; Yu Z; Hu X; Liu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():286-93. PubMed ID: 25228036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent interaction of oxytetracycline with the enzyme trypsin.
    Chi Z; Liu R; Zhang H
    Biomacromolecules; 2010 Sep; 11(9):2454-9. PubMed ID: 20681619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization on the toxic mechanism of two fluoroquinolones to trypsin by spectroscopic and computational methods.
    Guo Y; Qin P; Wang C; Pan X; Dong X; Zong W
    J Environ Sci Health B; 2020; 55(3):230-238. PubMed ID: 31679438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro metabolism of triclosan and chemoprevention against its cytotoxicity.
    Li Y; Xiang S; Hu L; Qian J; Liu S; Jia J; Cui J
    Chemosphere; 2023 Oct; 339():139708. PubMed ID: 37536533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of binding mechanism of triclosan towards cancer markers using molecular docking and molecular dynamics.
    Bhardwaj P; Biswas GP; Mahata N; Ghanta S; Bhunia B
    Chemosphere; 2022 Apr; 293():133550. PubMed ID: 34999105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular simulation and spectroscopic approach to the binding affinity between trypsin and 2-propanol and protein conformation.
    Momeni L; Shareghi B; Farhadian S; Vaziri S; Saboury AA; Raisi F
    Int J Biol Macromol; 2018 Nov; 119():477-485. PubMed ID: 30059735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin.
    Momeni L; Shareghi B; Saboury AA; Farhadian S; Reisi F
    Int J Biol Macromol; 2017 Jan; 94(Pt A):145-153. PubMed ID: 27720961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and comparison of the binding between tolvaptan and pepsin and trypsin: Multi-spectroscopic approaches and molecular docking.
    Ma X; He J; Huang Y; Xiao Y; Wang Q; Li H
    J Mol Recognit; 2017 May; 30(5):. PubMed ID: 27943449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling.
    Lin J; Xu Y; Wang Y; Huang S; Li J; Meti MD; Xu X; Hu Z; Liu J; He Z; Xu H
    J Biomol Struct Dyn; 2019 Sep; 37(15):4070-4079. PubMed ID: 30449253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms.
    Falisse E; Voisin AS; Silvestre F
    Aquat Toxicol; 2017 Aug; 189():97-107. PubMed ID: 28605648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression profiles in brain of male juvenile zebrafish (Danio rerio) treated with triclosan.
    Wang F; Wang R; Liu F; Chen W
    Toxicol Appl Pharmacol; 2019 Jan; 362():35-42. PubMed ID: 30336175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii.
    Wang XD; Lu YC; Xiong XH; Yuan Y; Lu LX; Liu YJ; Mao JH; Xiao WW
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):11246-11259. PubMed ID: 31960244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic analysis on the interaction of ferulic acid and tetramethylpyrazine with trypsin.
    Shuai L; Chen Z; Fei P; Wang Q; Yang T
    Luminescence; 2014 Feb; 29(1):79-86. PubMed ID: 23606547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.