These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 32026560)
41. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Tang S; Cao Z Phys Chem Chem Phys; 2012 Dec; 14(48):16558-65. PubMed ID: 22801590 [TBL] [Abstract][Full Text] [Related]
42. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts. Nowicki J; Mokrzycki Ł; Sulikowski B Molecules; 2015 Apr; 20(4):6140-52. PubMed ID: 25856063 [TBL] [Abstract][Full Text] [Related]
43. Plasma Tuning Local Environment of Hexagonal Boron Nitride for Oxidative Dehydrogenation of Propane. Liu Z; Yan B; Meng S; Liu R; Lu WD; Sheng J; Yi Y; Lu AH Angew Chem Int Ed Engl; 2021 Sep; 60(36):19691-19695. PubMed ID: 34197682 [TBL] [Abstract][Full Text] [Related]
44. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VO Zhao ZJ; Wu T; Xiong C; Sun G; Mu R; Zeng L; Gong J Angew Chem Int Ed Engl; 2018 Jun; 57(23):6791-6795. PubMed ID: 29517847 [TBL] [Abstract][Full Text] [Related]
45. Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Zhang X; You R; Wei Z; Jiang X; Yang J; Pan Y; Wu P; Jia Q; Bao Z; Bai L; Jin M; Sumpter B; Fung V; Huang W; Wu Z Angew Chem Int Ed Engl; 2020 May; 59(21):8042-8046. PubMed ID: 32203632 [TBL] [Abstract][Full Text] [Related]
46. Epitaxial Growth of Two-Dimensional MWW Zeolite. Li H; Zhang C; Lin Q; Lin F; Xiao T; Yan K; Shen B; Zhang H; Tang Y; Sun Z J Am Chem Soc; 2024 Mar; 146(12):8520-8527. PubMed ID: 38491937 [TBL] [Abstract][Full Text] [Related]
47. Highly efficient VOx/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane. Liu YM; Cao Y; Zhu KK; Yan SR; Dai WL; He HY; Fan KN Chem Commun (Camb); 2002 Dec; (23):2832-3. PubMed ID: 12478769 [TBL] [Abstract][Full Text] [Related]
48. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane. Dathar GK; Tsai YT; Gierszal K; Xu Y; Liang C; Rondinone AJ; Overbury SH; Schwartz V ChemSusChem; 2014 Feb; 7(2):483-91. PubMed ID: 24464945 [TBL] [Abstract][Full Text] [Related]
49. Correlation between the Properties of Surface Lattice Oxygen on NiO and Its Reactivity and Selectivity towards the Oxidative Dehydrogenation of Propane. Tan C; Liu H; Qin Y; Li L; Wang H; Zhu X; Ge Q Chemphyschem; 2023 Feb; 24(4):e202200539. PubMed ID: 36223257 [TBL] [Abstract][Full Text] [Related]
50. Evidence for Selective Association of Tetrahedral BO Fild C; Eckert H; Koller H Angew Chem Int Ed Engl; 1998 Oct; 37(18):2505-2507. PubMed ID: 29711346 [TBL] [Abstract][Full Text] [Related]
51. Synthesis and structural characterization of Al-containing interlayer-expanded-MWW zeolite with high catalytic performance. Yokoi T; Mizuno S; Imai H; Tatsumi T Dalton Trans; 2014 Jul; 43(27):10584-92. PubMed ID: 24798349 [TBL] [Abstract][Full Text] [Related]
52. Enhanced Surface Activity of MWW Zeolite Nanosheets Prepared via a One-Step Synthesis. Zhou Y; Mu Y; Hsieh MF; Kabius B; Pacheco C; Bator C; Rioux RM; Rimer JD J Am Chem Soc; 2020 May; 142(18):8211-8222. PubMed ID: 32281385 [TBL] [Abstract][Full Text] [Related]
53. MWW-Type Titanosilicate Synthesized by Simply Treating ERB-P Zeolite with Acidic H Guo S; Zhang Y; Ye Y; Song J; Li M ACS Omega; 2020 May; 5(17):9912-9919. PubMed ID: 32391478 [TBL] [Abstract][Full Text] [Related]
54. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Paolucci C; Di Iorio JR; Schneider WF; Gounder R Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332 [TBL] [Abstract][Full Text] [Related]
55. Hydrothermal synthesis of boron-free Zr-MWW and Sn-MWW zeolites as robust Lewis acid catalysts. Zhu Z; Guan Y; Ma H; Xu H; Jiang JG; Lü H; Wu P Chem Commun (Camb); 2020 Apr; 56(34):4696-4699. PubMed ID: 32211740 [TBL] [Abstract][Full Text] [Related]
56. A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds. Schwanke AJ; Balzer R; Wittee Lopes C; Motta Meira D; Díaz U; Corma A; Pergher S Chemistry; 2020 Aug; 26(46):10459-10470. PubMed ID: 32427389 [TBL] [Abstract][Full Text] [Related]
57. Synthesis, structure, and catalytic reactivity of isolated V5+-Oxo species prepared by sublimation of VOCl3 onto H-ZSM5. Lacheen HS; Iglesia E J Phys Chem B; 2006 Mar; 110(11):5462-72. PubMed ID: 16539484 [TBL] [Abstract][Full Text] [Related]
58. Controlled direct synthesis of single- to multiple-layer MWW zeolite. Chen JQ; Li YZ; Hao QQ; Chen H; Liu ZT; Dai C; Zhang J; Ma X; Liu ZW Natl Sci Rev; 2021 Jul; 8(7):nwaa236. PubMed ID: 34691688 [TBL] [Abstract][Full Text] [Related]
59. In situ UV-visible spectroscopic measurements of kinetic parameters and active sites for catalytic oxidation of alkanes on vanadium oxides. Argyle MD; Chen K; Iglesia E; Bell AT J Phys Chem B; 2005 Feb; 109(6):2414-20. PubMed ID: 16851236 [TBL] [Abstract][Full Text] [Related]
60. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. Yuan Y; Zhao Z; Lobo RF; Xu B Adv Sci (Weinh); 2023 May; 10(13):e2207756. PubMed ID: 36897033 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]