These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32026688)

  • 21. Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles.
    Namgung SD; Kim RM; Lim YC; Lee JW; Cho NH; Kim H; Huh JS; Rhee H; Nah S; Song MK; Kwon JY; Nam KT
    Nat Commun; 2022 Aug; 13(1):5081. PubMed ID: 36038547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect.
    Ma C; Yu P; Wang W; Zhu Y; Lin F; Wang J; Jing Z; Kong XT; Li P; Govorov AO; Liu D; Xu H; Wang Z
    ACS Nano; 2021 Oct; 15(10):16357-16367. PubMed ID: 34546029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circular Dichroism of CdSe Nanocrystals Bound by Chiral Carboxylic Acids.
    Puri M; Ferry VE
    ACS Nano; 2017 Dec; 11(12):12240-12246. PubMed ID: 29164858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
    Harutyunyan H; Martinson AB; Rosenmann D; Khorashad LK; Besteiro LV; Govorov AO; Wiederrecht GP
    Nat Nanotechnol; 2015 Sep; 10(9):770-4. PubMed ID: 26237345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key Role of Asymmetric Photothermal Effect in Selectively Chiral Switching of Plasmonic Dimer Driven by Circularly Polarized Light.
    Song J; Ji CY; Ma X; Li J; Zhao W; Wang RY
    J Phys Chem Lett; 2024 Feb; 15(4):975-982. PubMed ID: 38252465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response.
    Hao C; Xu L; Ma W; Wang L; Kuang H; Xu C
    Small; 2014 May; 10(9):1805-12. PubMed ID: 24523129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.
    Zhou C; Duan X; Liu N
    Acc Chem Res; 2017 Dec; 50(12):2906-2914. PubMed ID: 28953361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energetic hot electrons from exciton-to-hot electron upconversion in Mn-doped semiconductor nanocrystals.
    Parobek D; Qiao T; Son DH
    J Chem Phys; 2019 Sep; 151(12):120901. PubMed ID: 31575181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shape-induced optical activity of chiral nanocrystals.
    Rukhlenko ID; Baimuratov AS; Tepliakov NV; Baranov AV; Fedorov AV
    Opt Lett; 2016 Jun; 41(11):2438-41. PubMed ID: 27244383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional plasmonic chiral tetramers assembled by DNA origami.
    Shen X; Asenjo-Garcia A; Liu Q; Jiang Q; García de Abajo FJ; Liu N; Ding B
    Nano Lett; 2013 May; 13(5):2128-33. PubMed ID: 23600476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circular Dichroism Studies on Plasmonic Nanostructures.
    Wang X; Tang Z
    Small; 2017 Jan; 13(1):. PubMed ID: 27273904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods.
    Mukhina MV; Maslov VG; Baranov AV; Fedorov AV; Orlova AO; Purcell-Milton F; Govan J; Gun'ko YK
    Nano Lett; 2015 May; 15(5):2844-51. PubMed ID: 25908405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials.
    Liu T; Besteiro LV; Wang Z; Govorov AO
    Faraday Discuss; 2019 May; 214():199-213. PubMed ID: 30830140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.
    Hu L; Tian X; Huang Y; Fang L; Fang Y
    Nanoscale; 2016 Feb; 8(6):3720-8. PubMed ID: 26814829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local Optical Chirality Induced by Near-Field Mode Interference in Achiral Plasmonic Metamolecules.
    Horrer A; Zhang Y; Gérard D; Béal J; Kociak M; Plain J; Bachelot R
    Nano Lett; 2020 Jan; 20(1):509-516. PubMed ID: 31816242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-infrared chiral plasmonic metasurface absorbers.
    Ouyang L; Wang W; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Opt Express; 2018 Nov; 26(24):31484-31489. PubMed ID: 30650733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe
    Jiang Q; Du B; Jiang M; Liu D; Liu Z; Li B; Liu Z; Lin F; Zhu X; Fang Z
    Nanoscale; 2020 Mar; 12(10):5906-5913. PubMed ID: 32104821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong circular dichroism enhancement by plasmonic coupling between graphene and h-shaped chiral nanostructure.
    Wang Y; Dong J; Wang Z; Zhou S; Wang Q; Han Q; Gao W; Ren K; Qi J
    Opt Express; 2019 Nov; 27(23):33869-33879. PubMed ID: 31878446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.