BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32026889)

  • 21. Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
    Wu M; Ouyang Y; Wang Z; Zhang R; Huang PH; Chen C; Li H; Li P; Quinn D; Dao M; Suresh S; Sadovsky Y; Huang TJ
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10584-10589. PubMed ID: 28923936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
    Khondakar KR; Dey S; Wuethrich A; Sina AA; Trau M
    Acc Chem Res; 2019 Aug; 52(8):2113-2123. PubMed ID: 31293158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amontons-Coulomb-like slip dynamics in acousto-microfluidics.
    Quelennec A; Gorman JJ; Reyes DR
    Nat Commun; 2022 Mar; 13(1):1429. PubMed ID: 35318314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological microdevice with fluidic acoustic streaming for measuring uric acid in human saliva.
    Cardoso VF; Catarino SO; Martins P; Rebouta L; Lanceros-Mendéz S; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5879-82. PubMed ID: 19964879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading.
    García-Gancedo L; Pedrós J; Zhao XB; Ashley GM; Flewitt AJ; Milne WI; Ford CJ; Lu JR; Luo JK
    Biosens Bioelectron; 2012; 38(1):369-74. PubMed ID: 22784500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulation of self-assembled three-dimensional architecture in reusable acoustofluidic device.
    Nguyen TD; Tran VT; Du H
    Electrophoresis; 2021 Nov; 42(21-22):2375-2382. PubMed ID: 33765330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A film-based integrated chip for gene amplification and electrochemical detection of pathogens causing foodborne illnesses.
    Park YM; Lim SY; Shin SJ; Kim CH; Jeong SW; Shin SY; Bae NH; Lee SJ; Na J; Jung GY; Lee TJ
    Anal Chim Acta; 2018 Oct; 1027():57-66. PubMed ID: 29866270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lab-on-chip systems for integrated bioanalyses.
    Conde JP; Madaboosi N; Soares RR; Fernandes JT; Novo P; Moulas G; Chu V
    Essays Biochem; 2016 Jun; 60(1):121-31. PubMed ID: 27365042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergence of dip-pen nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem.
    Mitsakakis K; Sekula-Neuner S; Lenhert S; Fuchs H; Gizeli E
    Analyst; 2012 Jul; 137(13):3076-82. PubMed ID: 22627738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing.
    Rasouli R; Villegas KM; Tabrizian M
    Lab Chip; 2023 Mar; 23(5):1300-1338. PubMed ID: 36806847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidics integrated NiO based electrolyte-gated FETs for the detection of cortisol.
    Dhull N; Kaur G; Jindal K; Verma M; Tomar M
    J Mater Chem B; 2022 Nov; 10(44):9226-9234. PubMed ID: 36314722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface acoustic wave biosensors: a review.
    Länge K; Rapp BE; Rapp M
    Anal Bioanal Chem; 2008 Jul; 391(5):1509-19. PubMed ID: 18265962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustofluidic actuation of in situ fabricated microrotors.
    Kaynak M; Ozcelik A; Nama N; Nourhani A; Lammert PE; Crespi VH; Huang TJ
    Lab Chip; 2016 Sep; 16(18):3532-7. PubMed ID: 27466140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological small-molecule assays using gradient-based microfluidics.
    Azizi M; Davaji B; Nguyen AV; Mokhtare A; Zhang S; Dogan B; Gibney PA; Simpson KW; Abbaspourrad A
    Biosens Bioelectron; 2021 Apr; 178():113038. PubMed ID: 33556809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles.
    Ozcelik A; Aslan Z
    Biomicrofluidics; 2022 Jan; 16(1):014103. PubMed ID: 35154554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.