These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
508 related articles for article (PubMed ID: 32026923)
1. A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Feng Z; Wang E; Huang S; Liu J Nanoscale; 2020 Feb; 12(7):4426-4434. PubMed ID: 32026923 [TBL] [Abstract][Full Text] [Related]
2. Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production. Zhang H; Feng Z; Wang L; Li D; Xing P Nanotechnology; 2020 Sep; 31(36):365701. PubMed ID: 32413873 [TBL] [Abstract][Full Text] [Related]
3. Ultrathin NiSe Nanosheets on Ni Foam for Efficient and Durable Hydrazine-Assisted Electrolytic Hydrogen Production. Li Y; Zhao Y; Li FM; Dang Z; Gao P ACS Appl Mater Interfaces; 2021 Jul; 13(29):34457-34467. PubMed ID: 34261314 [TBL] [Abstract][Full Text] [Related]
4. Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting. Liu W; Shi T; Feng Z J Colloid Interface Sci; 2023 Jan; 630(Pt B):888-899. PubMed ID: 36356454 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophilicity and superaerophobicity Ni/Ni Hao M; Li C; Wu M; Li Q; Xiao Z; Shen D; Wang W J Colloid Interface Sci; 2025 Feb; 679(Pt A):966-974. PubMed ID: 39418899 [TBL] [Abstract][Full Text] [Related]
6. Superaerophobic P-doped Ni(OH) Xi W; Yan G; Tan H; Xiao L; Cheng S; Khan SU; Wang Y; Li Y Dalton Trans; 2018 Jul; 47(26):8787-8793. PubMed ID: 29916509 [TBL] [Abstract][Full Text] [Related]
7. Self-Interconnected Porous Networks of NiCo Disulfide as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Zhang Q; Ye C; Li XL; Deng YH; Tao BX; Xiao W; Li LJ; Li NB; Luo HQ ACS Appl Mater Interfaces; 2018 Aug; 10(33):27723-27733. PubMed ID: 30051715 [TBL] [Abstract][Full Text] [Related]
8. Engineering superhydrophilic Ni-Se-P on Ni-Co nanosheets-nanocones arrays for enhanced hydrogen production assisted by hydrazine oxidation reaction. Akbari Kenari M; Sabour Rouhaghdam A; Barati Darband G J Colloid Interface Sci; 2025 Jan; 678(Pt B):828-841. PubMed ID: 39270384 [TBL] [Abstract][Full Text] [Related]
9. Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery. Wang HY; Wang L; Ren JT; Tian WW; Sun ML; Yuan ZY Nanomicro Lett; 2023 Jun; 15(1):155. PubMed ID: 37337062 [TBL] [Abstract][Full Text] [Related]
10. Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Qian Q; Zhang J; Li J; Li Y; Jin X; Zhu Y; Liu Y; Li Z; El-Harairy A; Xiao C; Zhang G; Xie Y Angew Chem Int Ed Engl; 2021 Mar; 60(11):5984-5993. PubMed ID: 33306263 [TBL] [Abstract][Full Text] [Related]
11. In Situ Assembly of a Superaerophobic CoMn/CuNiP Heterostructure as a Trifunctional Electrocatalyst for Ampere-Level Current Density Urea-Assisted Hydrogen Production. Andaveh R; Sabour Rouhaghdam A; Seif A; Wang K; Maleki M; Ai J; Barati Darband G; Li J ACS Appl Mater Interfaces; 2024 Feb; 16(7):8717-8732. PubMed ID: 38326933 [TBL] [Abstract][Full Text] [Related]
12. Low-Cost Ni He M; Feng C; Liao T; Hu S; Wu H; Sun Z ACS Appl Mater Interfaces; 2020 Jan; 12(2):2225-2233. PubMed ID: 31850739 [TBL] [Abstract][Full Text] [Related]
13. Energy-efficient hydrogen production over a high-performance bifunctional NiMo-based nanorods electrode. Li RQ; Li S; Lu M; Shi Y; Qu K; Zhu Y J Colloid Interface Sci; 2020 Jul; 571():48-54. PubMed ID: 32179308 [TBL] [Abstract][Full Text] [Related]
14. Flower-like Fe-Co-M (M=S, O, P and Se) Nanosheet Arrays Grown on Nickel Foam as High-efficiency Bifunctional Electrocatalysts. Ma G; Du X; Zhang X Chem Asian J; 2021 Apr; 16(8):959-965. PubMed ID: 33660405 [TBL] [Abstract][Full Text] [Related]
15. Highly Efficient and Stable Catalyst Based on Co(OH) Wang Z; Ji S; Liu F; Wang H; Wang X; Wang Q; Pollet BG; Wang R ACS Appl Mater Interfaces; 2019 Aug; 11(33):29791-29798. PubMed ID: 31343158 [TBL] [Abstract][Full Text] [Related]
16. Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocatalyst for high-efficiency overall hydrazine splitting. Ao Y; Chen S; Wang C; Lu X J Colloid Interface Sci; 2021 Nov; 601():495-504. PubMed ID: 34090027 [TBL] [Abstract][Full Text] [Related]
17. Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H Hu Y; Chao T; Li Y; Liu P; Zhao T; Yu G; Chen C; Liang X; Jin H; Niu S; Chen W; Wang D; Li Y Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308800. PubMed ID: 37428114 [TBL] [Abstract][Full Text] [Related]
18. Controllable Synthesis of Ni Zheng X; Han X; Liu H; Chen J; Fu D; Wang J; Zhong C; Deng Y; Hu W ACS Appl Mater Interfaces; 2018 Apr; 10(16):13675-13684. PubMed ID: 29616794 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Heterostructured NiCoP@NiMn-Layered Double Hydroxide Arrays Supported on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. Wang P; Qi J; Chen X; Li C; Li W; Wang T; Liang C ACS Appl Mater Interfaces; 2020 Jan; 12(4):4385-4395. PubMed ID: 31851486 [TBL] [Abstract][Full Text] [Related]
20. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Dinh KN; Zheng P; Dai Z; Zhang Y; Dangol R; Zheng Y; Li B; Zong Y; Yan Q Small; 2018 Feb; 14(8):. PubMed ID: 29280276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]