These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32027064)

  • 21. An experimental strategy for the identification of AMPylation targets from complex protein samples.
    Pieles K; Glatter T; Harms A; Schmidt A; Dehio C
    Proteomics; 2014 May; 14(9):1048-52. PubMed ID: 24677795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions.
    Lallana E; Riguera R; Fernandez-Megia E
    Angew Chem Int Ed Engl; 2011 Sep; 50(38):8794-804. PubMed ID: 21905176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a rabbit polyclonal antibody against threonine-AMPylation.
    Hao YH; Chuang T; Ball HL; Luong P; Li Y; Flores-Saaib RD; Orth K
    J Biotechnol; 2011 Feb; 151(3):251-4. PubMed ID: 21185336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry.
    Schieber C; Bestetti A; Lim JP; Ryan AD; Nguyen TL; Eldridge R; White AR; Gleeson PA; Donnelly PS; Williams SJ; Mulvaney P
    Angew Chem Int Ed Engl; 2012 Oct; 51(42):10523-7. PubMed ID: 22996637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new chemical handle for protein AMPylation at the host-pathogen interface.
    Broncel M; Serwa RA; Tate EW
    Chembiochem; 2012 Jan; 13(2):183-5. PubMed ID: 22213418
    [No Abstract]   [Full Text] [Related]  

  • 26. A cleavable azide resin for direct click chemistry mediated enrichment of alkyne-labeled proteins.
    Sibbersen C; Lykke L; Gregersen N; Jørgensen KA; Johannsen M
    Chem Commun (Camb); 2014 Oct; 50(81):12098-100. PubMed ID: 25168178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays.
    Yu X; LaBaer J
    Nat Protoc; 2015 May; 10(5):756-67. PubMed ID: 25881200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transition metal-mediated bioorthogonal protein chemistry in living cells.
    Yang M; Li J; Chen PR
    Chem Soc Rev; 2014 Sep; 43(18):6511-26. PubMed ID: 24867400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chemical probe for lysine malonylation.
    Bao X; Zhao Q; Yang T; Fung YM; Li XD
    Angew Chem Int Ed Engl; 2013 Apr; 52(18):4883-6. PubMed ID: 23533089
    [No Abstract]   [Full Text] [Related]  

  • 30. Manipulating the Click Reactivity of Dibenzoazacyclooctynes: From Azide Click Component to Caged Acylation Reagent by Silver Catalysis.
    Shi W; Tang F; Ao J; Yu Q; Liu J; Tang Y; Jiang B; Ren X; Huang H; Yang W; Huang W
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):19940-19944. PubMed ID: 32697885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoluminescence Lifetime Imaging of Synthesized Proteins in Living Cells Using an Iridium-Alkyne Probe.
    Wang J; Xue J; Yan Z; Zhang S; Qiao J; Zhang X
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14928-14932. PubMed ID: 28941246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioorthogonal chemical reporters for monitoring protein acetylation.
    Yang YY; Ascano JM; Hang HC
    J Am Chem Soc; 2010 Mar; 132(11):3640-1. PubMed ID: 20192265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.
    Fu H; Li Y; Sun L; He P; Duan X
    Anal Chem; 2015 Nov; 87(22):11332-6. PubMed ID: 26501208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Presolski S
    Methods Mol Biol; 2018; 1798():187-193. PubMed ID: 29868960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient Peptide-Based Click Chemistry for Proteomic Profiling of Nascent Proteins.
    Sun N; Wang Y; Wang J; Sun W; Yang J; Liu N
    Anal Chem; 2020 Jun; 92(12):8292-8297. PubMed ID: 32434323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting AMPylation through the lens of Fic enzymes.
    Gulen B; Itzen A
    Trends Microbiol; 2022 Apr; 30(4):350-363. PubMed ID: 34531089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pseudo-Ligandless Click Chemistry for Oligonucleotide Conjugation.
    Mack S; Fouz MF; Dey SK; Das SR
    Curr Protoc Chem Biol; 2016 Jun; 8(2):83-95. PubMed ID: 27258688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-based proteome profiling using an affinity-based probe (AfBP) derived from 3-deazaneplanocin A (DzNep).
    Tam EK; Li Z; Goh YL; Cheng X; Wong SY; Santhanakrishnan S; Chai CL; Yao SQ
    Chem Asian J; 2013 Aug; 8(8):1818-28. PubMed ID: 23749335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and evaluation of 2-ethynyl-adenosine-5'-triphosphate as a chemical reporter for protein AMPylation.
    Creech C; Kanaujia M; Causey CP
    Org Biomol Chem; 2015 Aug; 13(31):8550-5. PubMed ID: 26173047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction.
    Shelbourne M; Chen X; Brown T; El-Sagheer AH
    Chem Commun (Camb); 2011 Jun; 47(22):6257-9. PubMed ID: 21547301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.