These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32027118)

  • 1. Enhanced Catalytic Performance of Subnano Copper Oxide Particles.
    Sonobe K; Tanabe M; Yamamoto K
    ACS Nano; 2020 Feb; 14(2):1804-1810. PubMed ID: 32027118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature H
    Sonobe K; Tanabe M; Imaoka T; Chun WJ; Yamamoto K
    Chemistry; 2021 Jun; 27(33):8452-8456. PubMed ID: 33884681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tin oxide subnanoparticles: a precisely-controlled synthesis, subnano-detection for their detailed characterisation and applications.
    Kuzume A; Yamamoto K
    Dalton Trans; 2020 Oct; 49(39):13512-13518. PubMed ID: 32789396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic Toluene Oxidation Catalyzed by Subnano Metal Particles.
    Huda M; Minamisawa K; Tsukamoto T; Tanabe M; Yamamoto K
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1002-1006. PubMed ID: 30430729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Being two is better than one-catalytic reductions with dendrimer encapsulated copper- and copper-cobalt-subnanoparticles.
    Ficker M; Petersen JF; Gschneidtner T; Rasmussen AL; Purdy T; Hansen JS; Hansen TH; Husted S; Moth Poulsen K; Olsson E; Christensen JB
    Chem Commun (Camb); 2015 Jun; 51(49):9957-60. PubMed ID: 25997569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia.
    Chary KV; Sagar GV; Srikanth CS; Rao VV
    J Phys Chem B; 2007 Jan; 111(3):543-50. PubMed ID: 17228912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide.
    Kim SC
    J Hazard Mater; 2002 Apr; 91(1-3):285-99. PubMed ID: 11900919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.
    Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C
    Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons.
    Takahashi M; Koizumi H; Chun WJ; Kori M; Imaoka T; Yamamoto K
    Sci Adv; 2017 Jul; 3(7):e1700101. PubMed ID: 28782020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.
    Parvas M; Haghighi M; Allahyari S
    Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous Metal Oxide Encapsulated Gold Nanocatalysts: Enhanced Activity for Catalyst Application to Solvent-Free Aerobic Oxidation of Hydrocarbons.
    Liu Y; Gao TN; Chen X; Li K; Ma Y; Xiong H; Qiao ZA
    Inorg Chem; 2018 Oct; 57(20):12953-12960. PubMed ID: 30277383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts.
    Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M
    Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer.
    Yamamoto K; Imaoka T
    Acc Chem Res; 2014 Apr; 47(4):1127-36. PubMed ID: 24576189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New routes to Cu(I)/Cu nanocatalysts for the multicomponent click synthesis of 1,2,3-triazoles.
    Abdulkin P; Moglie Y; Knappett BR; Jefferson DA; Yus M; Alonso F; Wheatley AE
    Nanoscale; 2013 Jan; 5(1):342-50. PubMed ID: 23166008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and particle size of di(ethylene glycol) mediated metallic copper nanoparticles.
    Anzlovar A; Orel ZC; Zigon M
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3516-25. PubMed ID: 19051905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO
    DeSario PA; Pietron JJ; Brintlinger TH; McEntee M; Parker JF; Baturina O; Stroud RM; Rolison DR
    Nanoscale; 2017 Aug; 9(32):11720-11729. PubMed ID: 28776054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promoter effect and a rate expression of the catalytic incineration of (CH3)2S2 over an improved CuO-MoO3/gamma-Al2O3 catalyst.
    Wang CH; Lin SS; Liou SB; Weng HS
    Chemosphere; 2002 Oct; 49(4):389-94. PubMed ID: 12365836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.