BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32027368)

  • 1. Extensive Shifts from Cis- to Trans-splicing of Gymnosperm Mitochondrial Introns.
    Guo W; Zhu A; Fan W; Adams RP; Mower JP
    Mol Biol Evol; 2020 Jun; 37(6):1615-1620. PubMed ID: 32027368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete mitochondrial genome of Taxus cuspidata (Taxaceae): eight protein-coding genes have transferred to the nuclear genome.
    Kan SL; Shen TT; Gong P; Ran JH; Wang XQ
    BMC Evol Biol; 2020 Jan; 20(1):10. PubMed ID: 31959109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifts from
    Yu R; Sun C; Liu Y; Zhou R
    PeerJ; 2021; 9():e12260. PubMed ID: 34703675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms.
    Regina TM; Quagliariello C
    Plant Physiol Biochem; 2010 Aug; 48(8):646-54. PubMed ID: 20605476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in protein gene and intron content among land plant mitogenomes.
    Mower JP
    Mitochondrion; 2020 Jul; 53():203-213. PubMed ID: 32535166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ginkgo and Welwitschia Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution.
    Guo W; Grewe F; Fan W; Young GJ; Knoop V; Palmer JD; Mower JP
    Mol Biol Evol; 2016 Jun; 33(6):1448-60. PubMed ID: 26831941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants.
    Groth-Malonek M; Pruchner D; Grewe F; Knoop V
    Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in
    Han EK; Cho WB; Tamaki I; Choi IS; Lee JH
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns.
    Guo W; Zhu A; Fan W; Mower JP
    New Phytol; 2017 Jan; 213(1):391-403. PubMed ID: 27539928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers.
    Bowe LM; Coat G; dePamphilis CW
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4092-7. PubMed ID: 10760278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny.
    Wu CS; Wang YN; Hsu CY; Lin CP; Chaw SM
    Genome Biol Evol; 2011; 3():1284-95. PubMed ID: 21933779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function.
    Keren I; Tal L; des Francs-Small CC; Araújo WL; Shevtsov S; Shaya F; Fernie AR; Small I; Ostersetzer-Biran O
    Plant J; 2012 Aug; 71(3):413-26. PubMed ID: 22429648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of mitochondrial RNA editing in extant gymnosperms.
    Wu CS; Chaw SM
    Plant J; 2022 Sep; 111(6):1676-1687. PubMed ID: 35877596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers.
    Chaw SM; Parkinson CL; Cheng Y; Vincent TM; Palmer JD
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4086-91. PubMed ID: 10760277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans.
    Kamikawa R; Shiratori T; Ishida K; Miyashita H; Roger AJ
    Genome Biol Evol; 2016 Feb; 8(2):458-66. PubMed ID: 26833505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene.
    Pombert JF; Otis C; Turmel M; Lemieux C
    PLoS One; 2013; 8(12):e84325. PubMed ID: 24386369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort.
    Malek O; Knoop V
    RNA; 1998 Dec; 4(12):1599-609. PubMed ID: 9848656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rickettsial DNA and a trans-splicing rRNA group I intron in the unorthodox mitogenome of the fern Haplopteris ensiformis.
    Zumkeller S; Polsakiewicz M; Knoop V
    Commun Biol; 2023 Mar; 6(1):296. PubMed ID: 36941328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete mitochondrial genome of Cycas debaoensis revealed unexpected static evolution in gymnosperm species.
    Habib S; Dong S; Liu Y; Liao W; Zhang S
    PLoS One; 2021; 16(7):e0255091. PubMed ID: 34293066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants.
    De La Torre AR; Li Z; Van de Peer Y; Ingvarsson PK
    Mol Biol Evol; 2017 Jun; 34(6):1363-1377. PubMed ID: 28333233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.